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PREFACE



1 <Simple’ refers here to solids for which we
can make semi-accurate theoretical predic-
tions. An example is copper. A slightly
more ‘complex’ solid is iron. The difficulty
with iron 18 to predict the critical temper-
ature below which it becomes magnetic.
Then there are complex solids, such as
YBa,Cu30,_g with properties for which
we bave no theory yet.

2 That’s right, there is not a single right’
solution. There are many known solutions
and the correct physical solution depends
on the question you want answered.

From the hydrogen atom to the many body problem.

0, you have learned how to solve the quantum mechanical problem of a particle
S in a box. Depending on your interests you may have even learned how to solve
atomic problems, such as the simple hydrogen atom. If you have struggled through the
math for these ‘simple’ problems, you are probably aware that working with (mathe-
matical expressions of) wave functions is often not very convenient. The mathematical
complexity of these simple problems and the ingenuity that goes into solving them is
quite formidable.

The problem to be discussed during this course is relatively simple to define: solve
the Schrodinger equation for a bunch of electrons and nuclei that obey the following
Hamiltonian:

h? 2 | e Zye* 1 ZyZ4e*
H=-" N2 § 1T g2, e e 1
zme; ! §2Mp p+2;g]‘rﬂ< ;;'rj_Rp‘-'-zzp:; Rpq

where sums over j and k run over all the electrons in the system and the sums over p
and q over all nuclei. This Hamiltonian appears quite impressive, but if you restrict
the sums to one electron and one nucleus it is just the hydrogen atom Hamiltonian.
For two protons and two electrons it is already getting complicated and you’ll have
to resort to some approximations to actually solve the problem. Nevertheless, you
can show that this can be done with sufficient accuracy that we can actually predict
properties of molecular Hydrogen. Now imagine doing this for a ‘simple’ solid!. For
the simplest of solids the sums run over N nuclei and NZ electrons, where N is of the
order 102! cm™3 (and Z is the atomic number). For the more mathematically inclined:
we are seeking the solution to a set of approximately 10?! coupled partial differential
equations. For the less mathematically inclined: the mathematicians have shown
that this problem can be classified as ‘NP-hard’ (non-polynomial hard), which means
that it can’t be solved (even numerically) in a reasonably finite amount of time. The
problem of solving the Schrodinger equation with the above Hamiltonian is known as
the (quantum) ‘many-body problem’ and is the most actively researched subfield of
physics of all time.

The first goal of this course is to show you how this problem can be approximately
solved. I will show you that in ‘simple’ solids the approximation is in fact quite good and
allows us to predict the behavior of such solids. I will explain how these approximations
can be improved to achieve almost perfect agreement, even for slightly more complex
solids. At the end of the course you will be able to appreciate that the Hamiltonian
written down above gives rise to solids that behave as metals or insulators, but also to
magnets and superconductors.

The second goal of this course is to show you how the approximate solutions? to
the many-body problem can be used to calculate or explain the properties of solids as
they are observed in simple daily experiments. For example, I expect you to be able to
explain why silicon-dioxide (a.k.a glass) is transparent and copper is not.

The third and final goal of this course is to get you excited about, and interested in,
the largest field of physics: condensed matter physics.

About these lecture notes

First and for all: I am greatly indebted to Tobias Bouma without whom these notes
would have looked a whole lot different (most likely sloppily hand written, possibly
coffee stained.). These lecture notes are however still a work in progress. If you find
mistakes or have suggestions for improvement: please make an effort to bring it to
my attention. Students to come will thank you! These notes are based on the great
works of much more experienced teachers than I am. In setting up this course I have
occasionally borrowed derivations or followed a certain approach to solve a problem
based on their work. The books on which this is based are much more extensive and
therefore great material for further study:

« Introduction to solid state physics, Charles Kittel.
« Solid state physics, Neil Ashcroft ¢ David Mermin.
« Solid-state physics, Harald Ibach ¢ Hans Lutb.

« Solid state theory, Walter Harrison.

« 'The physics of solids, Eleftherios Economou.



THE ELECTRONIC STRUCTURE OF SOLIDS

The tight binding approximation

KEYPOINTS:
g5 Many problems in condensed matter physics can be re-
duced to a two level problem.

g5 Bloch’s theorem states that the electron wave functions
will have the same periodicity as the crystal lattice.

g Wavefunctions in solids are characterized by the quantum
number k (the band momentum), and the electron spin.



1.1 Introduction

THe theory of quantum mechanics tells us that the evolution of a quantum mechan-

ical system is governed by the time dependent Schrodinger equation,

d¥(x, t)
dt

ih

= HY(x,t) (1.1)

where H is the Hamiltonian consisting of a potential and kinetic term. There are two
important observations to make here. The first observation is that we can separate out
the time dependence if the potential does not depend on time. In that case we can simplify
the problem to solving the time independent Schrodinger equation,

Hy(x) = Ey(x) (1.2)

The full solution to equation|[L.1is then obtained by multiplying the time independent
solution, ¥(x), with _
o(t) = e (1.3)

In this course (and in most of solid state physics) we will be concerned with time
independent potentials * and hence we need only ever worry about Eq.
W(x,t) = y(x)¢(t) is indeed a solu- The second observation is a bit more mundane: I have written the wavefunction
i GE1Eg with the argument x. For the remainder of these notes I will use this label to indicate
anything ranging from the 1 dimensional variable ‘X’ to a set of N variables describing
the positions and spins of N particles (i.e. x = {F1, 61,72, 02, ..., F'n, 0n } ) Where N can be

3 The onl e where we will encounte . . . .
o cas " 0 encounter a large number. Where necessary I will specify the exact meaning, but it is such an

a sort of time dependent potential i3

in the last chapter on superconductivity. easy (and widely used) short hand that I could not resist the temptation.
Strangely, the time dependence we will Similarly, very often (but not always) I will use units in whichh = 1 orc = 1
discuss there emerges from €q. or possibly both at the same time. I will therefore occasionally (most likely during

lectures) run into problems with units. In these cases it helps to remind oneself that 1
electronVolt = 11604 Kelvin = 8065.14 cm™!. These are probably the three most useful
numbers any physicist should remember. You use them whenever you want to compare
or convert an energy scale (typically measured in eV) to a temperature scale (typically
measured in Kelvin) or a length scale (not typically measured in wavenumber k = 27/4,
so you’ll have to make one further mental step).

With these preliminaries in mind it is time to introduce the Hamiltonian of a solid.
Just to be completely clear, for a given solid Eq. [1.2]reads,

Hy ({13725 51w )5 {R13 Ra3 wos Ry }) = Ey({r13725 w3 T }5 {R15 Ra3 s Ris }) (1.4)

with H depending on the conjugate particle operators {ry;...;rn }, {R1; ... Ru }> { P15 -3 PN}
and {P;;...; Py }. As usual, the Hamiltonian contains two parts: a kinetic term and a
potential term, H = K + V. The kinetic term is the simplest. As you should remember
from previous courses the operator p = —ifd/0x can be used to define the kinetic energy.
The total kinetic energy is simply the expectation value of the sum over the kinetic
energy of all particles. So we need the kinetic energy operator for N atoms:

h? > h?

Y-y v 1.5
2m, & zl;sz ! (15

=~

K

For reasons that will become apparent, I have already split the sum into two parts.
The first term (with lowercase indices) describes the kinetic energy of ZpNp electrons,
while the second term (uppercase indices) describes the kinetic energy of the nuclei. If
we consider just the kinetic energy, it is in fact quite easy to solve Eq. Since each of
the terms in Eq.[1.5]depend on the operators of only one particle, we can separate the
wavefunction into a product of wavefunctions that depend on only one set of particle
coordinates:

Y({r1; 5N} {R1 5 Ry }) = 0(r)o(r2)... P(Ry); (1.6)

The single particle wavefunction ¢ is the solution of the eigenvalue problem,

h2
-——V?(r) = Eo(r) (1.7)
2m

which is easy to solve (see Exercises).
The potential energy term is slightly more complicated. As you might have expected
4 Other terms can be included (for example the Coulomb interaction is the main contributor?. So without further ado the

the spin-orbit interaction), but these are operator describing the potential energy is (r is shorthand for |r; - r|):
much weaker compared to the Coulomb
interaction and can be taken care of in a

. 2 2 )
perturbative approach. V= % Z Z L. Z Z |erfeRp| + % Z Z ZrZqge (1.8)
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As before, the indices indicate whether the sum runs over electrons or nuclei. One
difficulty here is that we should make sure that we don’t double-count the interactions
(which is why there is a factor 1/2 in front of the first and last term) and that a particle
can’t interact with itself (hence the restriction k # j on the sum). A more major
difficulty is the fact that the Coulomb interaction ‘couples’ the particle coordinates
together. The upshot is that the nice factorization into single particle problems leading
to Eq. is no longer possible. We now need to find a solution for all N particles
simultaneously. This problem is known as the many-body problem. In principle it
is possible to solve such a problem numerically, but unfortunately the Hilbert space
for this problem grows exponentially with the number of particles. Practically this
means that it is possible to simulate problems with up to about 100 particles in a
reasonable amount of time, which is a long cry from the near infinity of particles in a
real solid. As we will see in the remainder of this chapter, it is possible to approximate
this complicated problem with an effective single particle problem. For those readers
interested in the many-body problem dedicated texts are recommended®.

To set the stage before solving any realistic problems, we will have a look at the
simplest possible multi particle problem. This simple problem will demonstrate a few
principles that underly approximations made in the many-body problem.

1.2 The hydrogen molecule

As a first step towards the approximate solution, we will sketch the steps to solve a
simplified version of the hydrogen molecule problem (figure[l.1). ~ We consider two
hydrogen atoms, for which we already know the solutions (i.e. the orbitals ¢, () =
Ru(nY (9, ¢) with eigenenergies E, = —h*/2majn®). We ignore all orbitals except for
the 1s-orbital and denote it in bra-ket notation as |i). This allows us to write down the
Schrodinger equation for an isolated hydrogen atom as:

Hl' ‘l) =€ ‘l) (19)

With these preliminaries in place we can now write down the hydrogen molecule
problem. The Schrodinger equation will be of the form

H|v(1;2)) = (Hy + Hy + Hi) |9(1;2)) = E |w(1;2)) (1.10)

The Hamiltonian will contain three parts: an ‘independent’ part referring to the kinetic
and potential energy of the electron on hydrogen atom 1 and one on hydrogen atom
2. Of course, if we bring the two atoms close enough together the orbitals on the
individual atoms will start to overlap and we will get an additional term resulting from
the interactions between the two electrons and nuclei. If we imagine this to happen as
a more or less adiabatic process, the wave function of the hydrogen molecule will be a
linear superposition,

lv(152)) =c1 (1) +¢2|2) (1.11)

of the original hydrogen 1s-orbitals. The coefficients ¢;, are to be determined by
finding the solution to Eq.[1.10} with

H=|1) e (1]+]2) &2 (2= [2)t (1] = 1) £ (2] (1.12)

The first two terms in the hydrogen molecule Hamiltonian represent the (ground-
state) energy of the atomic orbitals of atom 1 and 2, while the last two terms represent
the interaction energy (parametrized by t) resulting from the interaction between the
two atoms. To find the coefficients ¢;, and the new eigenenergies of the hydrogen
molecule we need to solve the following two level problem®

{—et _e} { ; } :E{ ; } (1.13)

As usual we obtain the new eigen energies by diagonalizing the 2 x 2-matrix’. This
gives,
E.=¢c+t (1.14)

with the corresponding eigenfunctions

)= =5 (1) +[2) (1.15)
and ;
=5 (I1)-12)) (1.16)

5> The Many-body problem, Advanced
Book. Classics.

11> Hydrogen |2> Hydrogen

1s' 1s'

® ®

Figure 1.1: We consider the hydrogen
molecule as consisting of two hydrogen
atoms, each with a single 1s orbital.

the combination of Eq. [1.10}
and leads to Eq.

6 Because the hydrogen atoms are identical
we take €1 = €. Furthermore we assume
t to be a real number.

7 Remember that this is done most easily
by setting the determinant of the matrix
equation equal to zero and solve for the
eigenenergies.
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Figure 1.2: The solutions of the hydrogen
molecule and their energies relative to the
original atomic orbitals.
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Figure 1.3: Most used lattices during the
course. (a): the only one dimensional peri-
odic arrangement of atoms, the linear chain.
Also indicated is the lattice vector a. (b,c):
the two dimensional square and hexagonal
lattice are the most important 2D lattices.

8  Introduction to solid state physics,
Wiley, Wikipedia, Crystal structure.
[Online]. Available: https : // en .
wikipedia . org/ wiki/ Crystal _
structure|

The resulting energy diagram of the hydrogen molecule is depicted in figure [1.2]
together with the original atomic energy levels. Within a few steps and without too
much effort we have solved a quite complicated 4 particle problem. How did we achieve
this? There are a few hidden ingredients leading to a tremendous simplification. First
of all, we have ignored the excited states of the hydrogen atom(s). It turns out that as
long as we are interested in the ground state properties of the hydrogen molecule and
not its excited states this is in fact a very reasonable approximation. This approximation
means in practice that we have reduced a large Hilbert space to a very simple one.
Another way of saying this is that we have assumed that the Hilbert space is spanned by
a complete, orthonormal set of states (i.e. |1) (1| +|2) (2| = 1). This approximation is
reasonable as long as the interaction between the two hydrogen atoms can be assumed
to be a perturbation (i.e. |{| << |¢|). Under this approximation the new eigenfunctions
are linear superpositions of the original states and the problem is relatively straight
forward to solve. The energy diagram in Fig. [1.2|shows that the new groundstate (|]-))
is lower in energy than the original atomic eigenfunction. At the same time a second
state (|+)) is formed that has a higher energy and is thus an excited state. Each of these
states can harbor 2 electrons (one with spin up and one with spin down). The lowest
energy is obtained when the two electrons of the hydrogen atoms both occupy the |-)
state, resulting in an energy gain of 2t for the formation of a hydrogen molecule. For
this reason |-) is called a bonding state. The state |+) has a higher energy relative to
the original atomic orbitals and is therefore called an anti-bonding state.

Part of the reason for introducing this very simplified picture of the hydrogen atom
is that the ‘standard model’ of the electronic structure of solids proceeds much along
the same lines. The eigenstates describing solids are in general linear superpositions,

xi(ry)  xa(ry) xn(ry)
1 () x(r) xn(r2)

|‘1I/G(T’1;---§T’N)> = W . . . (1.17)
x(y)  x(@N) an(TN)

of a suitably chosen set of basis states x;. As we shall see, we can very often reduce a
problem involving N interacting particles to a set of independent two-level problems. It
is important to keep in mind that describing solids by linear combinations of (atomic)
eigenstates is an approximation.

1.3 Crystal structures

One of the key concepts in condensed matter physics is that of a periodic lattice of atoms.
Interestingly, the concept was introduced well before it was possible to experimentally
demonstrate the existence of atoms let alone their periodic arrangement in crystals. It
turns out that crystal structures come with a limited diversity. The number of possible
lattice systems is determined by symmetry and dimensionality. In one space dimension
there exists only one type of lattice (fig. [1.3p). There are five possible lattices in two
dimensional space, two of which are depicted in fig. and[1.3k. The remaining
lattices are obtained from these two by simple deformations of these lattices. The
number of possible lattices grows quickly with the number of space dimensions: in
three space dimensions there are 14 possibilities, while there are 52 lattices possible in
four space dimensions. Fortunately, it is not at all necessary to know these structures
by heart to understand the basic concepts of condensed matter systems.

During most of the course we will only consider three particular lattices: the 1D
linear chain, the 2D square lattice and the 3D cubic lattice. This does not mean
that crystal symmetry plays no role in condensed matter physics. It is the crucial
concept necessary to understand the origin of the differences between materials. For
example, diamonds and soot are both made of carbon atoms. The huge difference in
appearance and properties (beautifully transparant and insulating vs. pure blackness
and highly conducting) finds its origin in a small difference in the periodic arrangement
of the carbon atoms dictated by a different lattice symmetry (face centered cubic vs
hexagonal). For what follows you need to remember two main concepts: (i) atoms are
arranged according to a periodic pattern and (ii) they are separated by lattice vectors d.
In the simplest case the periodicity is the same in all independent spatial directions (e.g.
isotropic). If you are completely unfamiliar with the concept of crystal structures you
are advised to look up relevant literature®. Note that lattice site is not an equivalent
word for atom. Each lattice site can in fact contain multiple atoms. One therefore
more often speaks of unit cells rather than lattice sites. Each unit cell then contains a
number of atoms.


https://en.wikipedia.org/wiki/Crystal_structure
https://en.wikipedia.org/wiki/Crystal_structure
https://en.wikipedia.org/wiki/Crystal_structure

Strena seu de Nive Sexangula

Johannes Kepler is probably best known for his work in astronomy, especially his

laws on the motion of planets. He is however better described as a mathematician.

He deserves a mention at this point for a major contribution to condensed matter
physics before the field even existed (or perhaps he should be credited for starting
it). In 1611 he wrote the treatise ‘A New Year’s Gift of Hexagonal Snow’ for a
friend in which he hypothesized for the first time that the hexagonal symmetry
of water crystals arose from the hexagonal arrangement of water particles. He
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went on to conjecture that a hexagonal arrangement of spheres would result in the densest possible packing of
space. The formal proof for this conjecture was delivered by a team led by Thomas Hales in 2014 (!). Image credits:

https://en.wikipedia.org/wiki/Johannes_Kepler

1.4 From the many-body problem towards single particle solutions

To make progress in the description of the electronic properties of solids it is necessary
to simplify Eq. [1.4]along the same lines as was done for the hydrogen molecule. Lets
have a closer look at the Hamiltonian,

h> >
H= e Z v - ; Mvg + U (rie) + Uei(1iy Ry) + Uit(Rypg) (1.18)

A first simplification can be made if we apply the Born-Oppenheimer approximation’.
As we will see later the movement of the ions is in fact crucial to understand some of
the most astonishing aspects of solids, but to zeroth order we ignore them. Under this
approximation the Hamiltonian thus reads:

hZ
H=—% Zvl‘z+Uee(rik)+Uei(ri)Rp) (119)

The first term in the sum refers to the kinetic energy of the electrons, the second term
to the Coulomb repulsion between the electrons and the last term to the interaction
between the electrons and the nuclei. This last term can be assumed to be a static
potential in which the electrons move, since we have assumed that the movement of the
nuclei can be neglected. The remaining difficulty is now in the term U, (7). In this
chapter we will approximate it by a kind of ‘mean-field approximation” we replace
this complicated many-body interaction by an effective potential landscape through
which each electron moves. The justification for this is unfortunately beyond the scope
of this book. I hope you will appreciate the fact that within this approximation we
will be able to solve problems and obtain solutions that can be verified in a laboratory.
In essence, what we have achieved by applying successive approximations is that the
complicated, dynamic potential landscape through which both the electrons and ions
move is replaced by a single, static potential landscape as indicated in by the solid lines
in Fig. This potential landscape is called the (effective) lattice potential, U, and
it allows us to reduce the Hamiltonian to,

H=— Ve + U (1 1.20
. Z 24 Upa(r) (1.20)

This is a tremendous simplification: we are now left with a set of independent single
particle problems to solve. Note that we haven’t actually solved or changed anything
yet. All we have done so far is to replace the complicated sum of potentials with a
single effective one. Also note that we do not a priori know the shape of the lattice
potential, U, (7). Without a shape for this lattice potential we will never get any closer
to a working theory that explains the differences between solids'’. Fortunately, we
only really need to know the symmetries of the crystal structure and the original
atomic wavefunctions to get a good description of the electronic structure. The atomic
wavefunctions are more easily calculated, while in many cases of interest somebody,
somewhere has done the necessary x-ray diffraction experiments to determine the
crystal symmetries and the crystal structure. With the crystal symmetries and structure
in hand we have enough information to solve the single particle problem for a given
solid. To conclude this section, we note that we now have to solve the following
Schrodinger equation:

[-h—zvz + U(?)} Wy(r) = ew(r) (1.21)
2m

(4

¥ The Born-Oppenheimer approximation as
applied to molecules or atoms assumes that
the motion of electrons and nuclet can be
treated separately. It is generally validated
by arguing that the ion mass, M, is much
larger than the electron mass m,.

Figure 1.4: The effective lattice potential is
indicated in black. It consists of overlapping
atomic potentials (indicated in gray) and an
effective mean-field potential generated by
all other electrons.

10 There is one exception, in the (nearly) free
electron model the lattice potential is as-
sumed to be almost completely flat and fea-
tureless. Remarkably this oversimplified
model actually gives a good understanding
of many properties of metals.
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[c®))? =1 and c(® +R) = c(R")e(R)

10

where we have introduced the shorthand U(F) for the lattice potential. T hope you
recognize this as the Schrodinger equation of a particle in a box and that in principle
you should be able to solve such problems, provided the potential U(#) is simple
enough. To solve this for the case where U(7) is a complicated periodic function we
need to make use of an important theorem.

1.5 Bloch’s theorem

The essence of Bloch’s theorem is very simple. It states:

The single particle wave function of electrons in solids can be expressed in terms of a ba-
sis of wavefunctions and has the same periodicity and symmetry as the crystal.

Despite its simplicity, it is one of the cornerstones of condensed matter physics and
leads to a very powerful description of electrons in solids. To prove Bloch’s theorem,
we start by casting the periodicity imposed by the crystal structure and symmetry in
mathematical form. This is done simply by choosing a lattice potential with the same
symmetries as the crystal.

U) = UG +R) (1.22)

> > . . > . .
where R = nd with n some integer and d is the set of shortest vectors connecting two
lattice sites (see Fig. [I.4for examples). We now note that based on Eq. we have

2 > > > > >
{—LV2+U(?+R)] w(r+R)=cw(r+R) (1.23)
me
which can be rewritten as (using Eq. ,
2 > > >
{— L U(?)] y(F+R) = ey(F+R) (1.24)
2m,

But this is just the Schrodinger equation for the wave function (¥), so:

Y(F+R) = cRyw(P) (1.25)
Since we must have \C(E)\Z =1and c(ﬁ’ +13) = c(ﬁ’)c(ﬁ) it follows that the function
c(ﬁ) = exp(z'E . ﬁ), such that
*Ray(7) (1.26)

Eq. [1.26]is a statement of Bloch’s theorem, which allows us to cast the problem onto a
‘basis’ of wavefunctions. To do this, we recast Eq.[1.26in the following form,

‘l//(?‘+1§) =e

i) = () (1.27)

where k is the electron wavevector (such that p = hk). It is easy to see that this
wavefunction has the same periodicity as the crystal if we require that,

u() = w7 + R) (1.28)

By combining Eq. with the Schrodinger equation, we obtain the following differ-
ential equation that the u.(7) should obey:

h? 2~ 2 > R 5
{— (V + 1k> + U(r)} uy (1) = exuk(r) (1.29)
2m,
Since the lattice potential is assumed to be periodic, we should be able to expand it in
a Fourier series,

U@ =Y Uge™ (1.30)
G

From this Fourier series it is easy to show that the vectors G have to be chosen with
care. Since,
UF+R) = Uge'™ (8)  eéRyp), (1.31)
G
we must have, L.
G- R=2nm. (1.32)

such that indeed U(F + R) = U(7). For a given set of lattice vectors the above relation
defines the set ‘reciprocal lattice’ vectors. For the specific case of a three dimensional
crystal we have,

R =&, + md, +né; (1.33)



and > > > >
G = pby +gb, +1b; (1.34)

A little linear algebra shows that for G to satisfy Eq. , the b; should satisfy,

E': Zn(&jx&k)

1.35
, Vcell ( )

Note that the vectors b; have the dimension of inverse length, just like the electron
momentum (since k = 27/4). Therefore Eq. [1.34] combined with Eq. [1.35]defines a
lattice similar to Eq. but with dimension of inverse length (or with dimension of
momentum!). For this reason it is called the reciprocal (or inverse) lattice. This has
a crucial implication: not only is the wave function periodic in real space, it is also
periodic in momentum space. As you can see from the definition of the reciprocal
lattice vectors (Eq. [1.35)), they are uniquely determined by and different for each set of
real space vectors. The reciprocal lattices corresponding to the simple lattices depicted
in Fig.[1.3p,c are also square and hexagonal lattices respectively. For more complicated
real space lattices, complicated reciprocal lattices can, of course, be constructed. The
power of these statements will (hopefully) become clear in the next section.

1.6 The tight-binding problem

We can use Bloch’s theorem to recast the problem defined by Eq. For a general
form of the lattice potential this is still a complicated problem, since the number of
terms that we need to retain in its Fourier expansion (Eq. can become quite large.
The problem is typically solved in two opposing limits. The weak potential limit !!
is typically used to describe metals. We will here not spend too much time on this
problem and instead leave it as an exercise. This situation is also known as the (nearly)
free electron model and has been discussed extensively during the course ‘GM1’. The
formal derivation is not all that complicated and since it follows roughly the same steps
as the derivation in the opposite limit (to be discussed here) we leave it as an exercise
to the reader (see Exercise ). The second limit is known as the ‘atomic’ potential
limit or tight-binding limit. In this limit we assume that we can replace the crystal
potential by regularly spaced atomic potentials. This implies that the solutions (e.g.
the wavefunctions) in fact closely resemble the atomic wavefunctions. By comparing
the atomic potential with the approximate crystal potential (Fig. we expect this
to work well for materials consisting of atoms where the highest occupied orbitals are
s— and p-wave orbitals (for example silicon or carbon allotropes etc.).

Before continuing, let us remind ourselves of the atomic problem. The Hamiltonian
is simply:

2
H, = Py, Uu(P) (1.36)
2m
where 7 refers to the electron coordinates. The Schrédinger equation is,

Hat{'//n(F) = Enq//n(;) (137)

which has solutions /1, %25, W2y, ... With corresponding eigenenergies. Now, referring
to Fig. and Eq. [1.21} suppose we would write our Hamiltonian in the following
way:

hz 2 >
H=-—V"+U,(r

Py e rF(T)

B2 N L. (1.38)

===V + U+ ), Ua(F-R)
m £
R=0

where R is a vector of the real space lattice. We now notice that the first two terms in
the second line exactly correspond to the atomic Hamiltonian, Eq. We can now
use the solution to the atomic problem to rewrite the Schrodinger equation for an
electron moving through the crystal potential. Let’s act with the full Hamiltonian on
an atomic orbital v, (7). We find,

Hyo(F) = Huyo(P) + AUG = Ry, (F)
= E,a(7) + AU = Ryyo(7)

Where we have introduced the term AU - ﬁ), representing the modification of the

potential at position 7 due to the nuclei at positions R. If this term equaled zero, the
problem would in fact be solved (as we would trivially have the atomic problem).

with the given choice for the recip-
B > . .
rocal lattice vectors G indeed satis-

fies Eq.

1 I this limit the lattice potential is replaced
by a very weakly modulated potential.
This situation describes electrons moving
through the lattice in energy states close to
the top of the lattice potential depicted in

Fig.
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Now imagine what happens if we slowly turn on the lattice potential arising from all
the other nuclei. If this is done sufficiently slowly (adiabatically), the eigenfunctions
shouldn’t change all that much. However, as the last term on the 2nd line shows, the
@, (f) are no longer the correct eigenfunctions of the Hamiltonian. To proceed we
make an ansatz about the structure of the wavefunction. If we were trying to solve an
atomic problem (for example, including spin-orbit interaction), a reasonable ansatz
would be a linear superposition of the atomic orbitals

o) = Y byl () (139)

However, this wavefunction does not satisfy Bloch’s theorem. Since we know that
AU(# - R) will introduce the lattice periodicity, we take as the ansatz,

Yi(P) = D v (F - Ry R (1.40)
Ryn

Note that this wavefunction is exactly equivalent to Eq. if we identify the u(¥) with
the linear superposition Eq. Note that we have expressed our lattice wavefunction
in a basis of wavefunctions (the atomic orbitals).

All we need to do next is find the coefficients b, and the modified eigenvalues.
These will of course depend on the shape we choose for AU(7 - R). Unfortunately,
nobody knows what AU(7 - 13) looks like. Moreover, it will be different for each and
every crystal: the precise potential at a given lattice site will depend on the atomic
species of its neighbors, the number of neighbors, the atomic species of the neighbor’s
neighbors and so on. The aim of the coming page(s) is to solve the problem as far as

we can without making any assumption about the actual form of AU(¥ - R). There is
one important point that should be stressed: if we would know the exact shape of

AU(F - R), the final result would be the exact solution of the single particle problem.
So far, we have made no approximations (we only actually enforce the tight binding

limit if we make assumptions about AU(F —13)).
The first step is to define the problem. The Schrédinger equation reads

Hy(7) = Exwi(F) (1.41)

The left-hand side can be rewritten, using our ansatz wavefunction, as:

Hy() = 3 e, [Hat +AUG - E)} (7= R) (1.42)
Rn

Making use of Eq.([1.37} we can replace H,, by the atomic eigenvalues. The Schrodinger
equation then reads:

> R, By (- R) + > FRb, AUG = Ryya G- R) = Er Y e Rbyyr, F-R)  (1.43)
Rn

Rn Rpn

Now we make use of a little trick; we multiply both sides by v, and integrate,

3R E, [ v Era-R+ 3 b, [ v, DAUG - v -R)

o - o (1.44)

=53, [ divirvn-R)
Rn

Lets take a closer look at the first term. We can separate it into a term where R = 0
and a sum for R = 0,

> by [ divyErva-R) = B bk [ diviyErua@re Y bk, [ divi Ea-R)

R;n R#0,n

(1.45)
The first term can be rewritten by making use of the completeness relation for the
atomic orbitals,

/ &Y PY(?) = G (1.46)

By summing over all atomic orbitals we pick out the orbital m. Therefore,

> e Rb, E, / diy (P —R) = buEn + > e Rb,E, / iy, (Fwa(F-R)  (1.47)
Rn

R=0,n



we can further simplify this expression by introducing the definition,
anaB)= [ i Pro - ) (1.48)

The term appearing on the right-hand side of Eq. can be treated similarly. For the
second term on the left-hand side of Eq. we introduce two terms:

B = / di (AU Gyya() (1.49)

and
T (B) = / diy’ (YAUG - Ryy(F - ) (1.50)

By reorganizing some terms we now have:

O 5 N N Eq. can be obtained from Eq
(Ex=En)bm =Y by {ﬁ —(Ec=Ep) Y e o, (R)+ Y e""Rxm,n(R)} (1.51)

Rz0 R=0

This is the most important result of this chapter. With this expression you will be

able to derive the electronic dispersion, a.k.a. the band structure, for a given crystal

structure and a given set of integrals &y, n, B and ¥,,. Throughout this course I will

refer to this expression as the central equation. Note that the difficulty of solving

the Schrodinger equation is still not solved, but is now hidden in the set of integrals

and orbitals. Lets consider the (rough) meaning of the integrals first. In fact, the

only integral that we have any real feeling for is am,n(ﬁ). This integral is called the

overlap integral. If the atomic problem is solved accurately this integral is easily

calculated with similar accuracy. In most cases this integral is typically small compared

to the other terms appearing in the central equation and is therefore often ignored'2. 12 Please don’t take this to mean that it is
The other two integrals involve the lattice potential and are strongly dependent on always negligible. It is typically an impor-
the crystal structure (coordination number, symmetry etc.) and the flavors of atoms tant factor when d-orbitals are involved.
involved. There are empirical formulas for these integrals that can be used in simple

cases (e.g. to understand the band structure of silicon), but personally I find this rather

uninteresting. As far as this course is concerned both integrals provide a number and

we can obtain this number by matching calculated band structures to measured ones.

Despite the difficulty of obtaining accurate values for these integrals we can understand

their origin. If we look at the structure of Eq. [1.49 we see that it involves the atomic

orbitals on site 7 as well as AU(#) only. The latter is the deviation of the local potential

from the atomic potential. As figure[I.4|demonstrates, this deviation is pretty small,

so to first order this doesn’t really affect the wavefunctions. As we will see in the next

section and in the exercises, this term is mainly responsible for a shift in the energy

of a given orbital. The last integral (Eq. is the most complicated to interpret.

It involves wavefunctions on different sites, just like the a;,,, but it also involves the

lattice potential. This integral is known as the hopping integral: if finite this term is

responsible for coupling different lattice sites and making it energetically favorable for

electrons to delocalize’®. In the next section I will describe a simple method to use '3 The overlap integral also couples different
the central equation to solve a given tight-binding problem followed by the simplest sites, but does not lead to a net gain in
possible example. To close this section I would like to stress that tight-binding theory =~ ¢"¢7&-

is a phenomenological approach: its accuracy depends on the accuracy with which the

three integrals are determined and we have no way to test this accuracy. The power of

the method lies in the fact that it gives a clear insight in the origin of measured band

structures and it allows one to easily parameterize the electronic structure for more

complicated calculations (for example, in the calculation of the optical response of

solids).

1.7 The central equation and a simple example

In this section we will look at a simple scheme that can be used together with the
central equation to solve for the electronic structure of solids. Note that the method
is completely general and in principle exact: if the three integrals would be known
exactly, the resulting band structure would be the exact solution to the single particle
Schrodinger equation for an electron moving through a complicated lattice potential
landscape. In general, we will not be interested in the electron wavefunctions in the
solid itself. We therefore do not have to solve for the coefficients b,. We will only be
interested in the eigenvalues, the ‘E;’. Note that for each electron momentum k we
will have an independent solution. To solve a tight binding problem using the central
equation we will always follow the following steps:
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14 This reasoning breaks down when we con-
sider bhigher angular momentum orbitals.
For example, the 3d orbitals consist of 5
individual orbitals (m;=-2,...,2). In the ab-
sence of symmetry breaking terms, these
orbitals are degenerate and we ought to
keep all 5 of them.

15 To ease writing in more complicated prob-
lems this is a good point to introduce the

notation y = 3; ei’;';r(ﬁ).

-
[

@
€

3s

Radial probability

\

N
] ©
w
g Q
/

-

5a, ™ 15a,

20a,

25a,

Figure 1.5: Radial distribution of the proba-
bility distribution for the atomic orbitals.
ay = 0.53 A is the Bohr radius. Image
credit: http://hyperphysics.phy-astr)
gsu.edu.
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+ Determine how many orbitals per lattice site should be included.
» Write down the relation between coefficient b,, and all other coefficients b,.

« This requires writing down N equations for N unknown coefficients. It is therefore
possible to eliminate the coefficients all together.

« From the resulting equation solve for E in terms of the three integrals a, », Bmn
and -

- To continue you need more information about the crystal structure and the relative
importance of the integrals. The crystal structure defines the set of vectors R

required to work out the sums over R, while the relative importance of the integrals
will be given for a given exercise discussed during the course.

« The last step is to simplify the exponentials appearing in Eq.

To illustrate how this works in practice we will now consider the simplest possible
problem: a linear chain of hydrogen atoms. This example allows me to illustrate all
the necessary tricks and also gives some insight into the physics of solids and their
electronic structure. Since it describes a linear chain of hydrogen atoms it is however
pretty much useless from a practical point of view (since these do not exist in nature to
the best of my knowledge). The difficulty of solving a tight binding problem depends
strongly on how many atomic orbitals we keep in the calculation. To know how many
atomic orbitals we need to keep in order to describe a realistic problem with some
accuracy requires some experience. For the hydrogen chain we will keep just the 1s
orbital. This is a reasonable approximation if we are interested in the low energy
properties. In the atomic problem, the 1s and 2s orbitals are separated by several
electronVolt (eV). This will not change drastically when we consider the chain and
therefore to very good approximation we need just the 1s orbital'4.

The labels m, n appearing in the sums in Eq. are encoding for the different
orbitals. We could introduce the notation n = 1 - 1s-orbital, n = 2 - 2s-orbital, but
personally I find it much more convenient to just let the sum run over m,n = 1s, 2s, 2p....
With just the 1s-orbital as the basis we have from Eq. 5

(Ex = Ev)bis = b | Brons— (Ex— Erg) . e a1 (R) + Y e i1, (R) (1.52)
R=0 R=0

We have in this case (N = 1) a single equation depending on a single coefficient (by,)

and we can trivially eliminate it and solve for E; (for convenience we drop one 1s label

on the integrals):

ﬂls + ZR;:O fls(R)eik.R
1+ 20 Ofls(R)@ﬂ;']é

E.=E s+ (1.53)
Note that so far we have really made no assumption about the crystal structure. Our
only assumption has been that we need to consider 1s orbitals only. The result in Eq.
[1.53]is in fact valid for an arbitrary lattice structure with arbitrary spatial dimension.
For the special case of a 1D chain of (equally spaced) hydrogen atoms the set of lattice
vectors R = na, where a is the distance between two neighboring atoms and |n| = 1,2, 3...
(note that we need to sum over positive and negative integers, or write two exponentials
in the sum to include neighbors on the left and on the right of a given site.). This
allows us to replace the sum over lattice sites R with a sum over atomic sites n:

ﬂls + Z\n|;=() bﬂls(na)eikxna

Ek = E13 + .
14 220 a15(najeikna

(1.54)

The next step is to determine the relative importance of the overlap integrals. Lets
consider the a,(R) integral. Looking back to Eq. we see that this integral is given
by the overlap between a 1s-orbital on site 7 and a 1s-orbital on site 7 +R. Given the
radial probability of the 1s-orbital (see Fig. [I.5), we expect the overlap integrals to
become increasingly smaller for atoms separated by more than one lattice site. In other
words, we only expect this integral to have any importance for nearest neighbors.
As a result we stop summing after |n| = 1 and keep just two exponentials.

> @) = oy (-a)e ™ + ey (@ (1.55)

|n|20
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Figure 1.6: The dispersion for a linear chain

in the 1% Brillouin zone. The zone bound-

Tf/ a Ek ﬂ'-/ a ary is indicated by the dashed lines. Note

| 1 that the total width (bandwidth) in energy
ranges from -2y to 27y;.

4V1s

Since we are considering a simple chain with 1s-orbitals, the problem is inversion
symmetric between atoms on the left and on the right, i.e. ay(—a) = ay5(a), and we can
combine the two exponentials into a cosine.

Z a1s(na)e™" = gy, [e‘fk"“ + e”‘x"} = 20015 cos(k,a) (1.56)

|n|20

A similar argument can be applied (in this particular case) to the sum over the hopping

integrals yy5(na). It can be shown?® that these integrals become smaller with increasing  © W, Harrison, Electronic Structure and
distance between the lattice sites (falling off as 1/d, where d is the distance) and it the Properties of Solids, W.H. Freeman,
usually suffices to keep only nearest and next-nearest neighbors. For this example we San Francisco, 1980.

will only keep the nearest neighbor hopping integral. This again reduces the sum over

lattice sites to just two sites (xa) and we finally obtain:

PBis +2y15(a) cos(kza)

Ek = E]S +
1+ 20ci5(a) cos(k.a)

(1.57)

For simplicity we further ignore the contribution of the a;; term and set it to zero:
Ey = Eqs + 315 + 2115(a)cos(kya) (1.58)

This is a reasonably simple result. We find that the energy eigenvalues for the

electron wavefunctions (labelled with quantum number k) are given by the energy of
the atomic orbital, shifted by a small correction (8;;) due to the slight modification
of the atomic potential by neighboring atoms. On top of this we find that electrons
with small momentum gain energy with respect to the atomic eigen energy, while
high momentum states pay a bit of energy. This is quite similar to what happens in
molecules (see figure[1.2} imagine that the bonding state coincides roughly with the
k = 0 state here). In principle we could now continue to work out expressions for
the coefficients b,, (which would be trivial in this case.), but most of the time the
dispersion relation already provides a lot of insight.
The dispersion is plotted in Fig. There are a number of important points to
make about this simple result. As we have seen in Sec. reciprocal space is periodic.
For a linear chain, the reciprocal lattice vector is given by 27/a (see Eq. [1.32). Therefore
we only have to plot the dispersion in the so-called first Brillouin zone. This is also
called the reduced zone scheme. The next Brillouin zone will be an exact copy of this
Brillouin zone!”. Another important quantity is the Fermi energy. The Fermi energyis 7 For 3D crystal structures this can become
defined as the energy separating occupied electronic states from unoccupied electronic quite a bit more complicated. See for exam-
states. To determine the Fermi energy we first need to know which states are occupied Dles [nitps: /7 en. wikipedia. org/
and to this end we first need to do some simple counting of states. For the linear wiki/Brellouin. sonel
chain of hydrogen atoms we have started with N 1s-orbitals, each occupied with one
electron. We had better have enough empty states to harbor all those electrons. It is
not difficult to show that, for a linear chain of length L with N lattice sites separated by
distance a, the volume per k-point is 27t/Na. Subsequently, there are N available states
in our one dimensional dispersion and thus a grand total of 2N states if we include the
spin degeneracy of each state. We started out with N hydrogen atoms, each carrying a
single electron and therefore we need to distribute N electrons over 2N available states.

The lowest energy configuration is thus achieved by occupying the bottom half of the the volume per k-point i?fng vol-
band. At absolute zero temperature there will be a sharp cutoff between occupied ume is given by Ak = - This
and unoccupied states indicated in Fig.[T.6] by the Fermi energy (E¢). In this example, can be done using Eq. and Eq.
the Fermi energy lies in the band. This implies that there are empty states just above

and occupied states just below the Fermi energy. It will therefore cost an infinitesimal
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18 lectrons always interact. Theoretically
it has been found that metals do not ex-
ist in 1 dimension, but instead a so-called
Luttinger liquid 18 formed. In this liquid
the electron falls apart into two objects: a
charged particle and a spin particle. These
objects move independently. The experi-
mental verification of these ideas is still
actively pursued (also in Amsterdam!).

Figure 1.7: Band structure of silicon carbide
along high symmetry directions of the Bril-
louin zone. Image credit: Hemstreet, L.A.,
Fong, CY. Silicon Carbide - 1973, Eds. Mar-
shall, R.C., Faust, JW., Ryan, C.E., Univ. of
South Carolina Press, Columbia, S.C. 1974,
284.
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amount of energy to excite an electron from an occupied to an unoccupied state. It
turns out that this is what ‘defines’ a metal: if we apply even the smallest perturbation
(e.g. electric field) along the chain, some electrons can (asymmetrically) occupy the
band and a current will flow. If on the other hand we would consider a chain of Helium
atoms (with 2 electrons per atom) the band would be exactly filled and the Fermi
level would lie just above the top of the band. In this case, there are no ‘empty’ states
for electrons to occupy; the band simply stops and there are no allowed solutions of
the Schrodinger equation at higher energy. We can apply a perturbation as large as
we like, but without empty states for the electrons to occupy no transitions can take
place. This is what defines a good insulator. Of course, in more realistic cases there
will be other atomic orbitals than just the 1s-orbital and there will be more bands
beyond the single cosine band of Fig. Nevertheless, the energy separation between
subsequent bands can be very large. If the energy gap between a fully occupied band
and an empty band becomes small compared to, for example, temperature we use the
term semi-conductor rather than insulator.

In the previous paragraph I have discussed some properties that can be gleaned
directly from the electronic dispersion of a linear chain of 1s-orbitals. Most of the
related concepts have been extensively discussed during the course GM-1 and I cannot
repeat all of them here. If we move beyond the simplest example and include more
orbitals, more atoms per unit cell and/or more spatial dimensions the method to
solve the problem remains the same. Some important details do change however. For
example, in one spatial dimension (and in the absence of interactions between the
electrons'®) we have the simple rule that chains of atoms are metallic if the atoms have
an odd number of electrons, while they are insulating if there are an even number
of electrons. This simple rule breaks down in higher dimension and quite often
the mixing of atomic orbitals results in overlapping bands. To get an idea of what a
‘real’ band structure looks like, the band structure of silicon-carbide is shown in Fig.
Some important features of tight-binding band structures in higher dimensions
will be discussed in the exercises at the end of this chapter. What the bandstructure of
silicon-carbide shows is that the lowest ‘1s’ - band indeed looks pretty much cosine like.
Note that a given band does not correspond to a particular atomic orbital. As soon
as more than one orbital is involved these orbitals will mix together and form bands
with varying amounts of orbital character. Fig. also shows significant deviation
from simple cosine like bands for higher energy bands.

There is one important aspect that we have not touched upon yet: in a more
realistic problem where there is more than one orbital per unit cell there will be two
bands and they will be separated at the zone boundary by a band gap. This can be
seen clearly in Fig. [I.7 where the lowest band is separated from all others. The origin
of bandgaps will be discussed in the exercises at the end of the chapter.

1.8 The electron and the quasiparticle

Personally, this section discusses one of my favorite bits of (solid state) physics. On the
one hand it seems mundane, yet on the other hand it is extremely deep and a little bit
magical. It also applies to many more physical situations than the case discussed here
and we will encounter it a few more times during the course. Moreover, it indirectly led
to many important discoveries, including the Higgs mechanism and the formulation
of Quantum ElectroDynamics. It goes as follows.

Most of you will have an internal picture of an electron, perhaps a nice spherical,
silvery colored object. If you don’t have such a picture before your mind’s eye, imagine
that it looks like a nice spherical, silvery colored ball (you are even allowed to image
reflections of the surroundings in its surface). Apart from the fact that an electron is
an elementary particle and therefore a point-like object with no real diameter, such a
description works well for ordinary electrons in vacuum. This little particle has a mass
(9.10938356 - 103! kg to be precise) and a charge (1.60217662 - 10~*® Coulomb) that
does not vary from one electron to the next (as they are indistinguishable particles).
This particle we call ‘electron’. Now imagine an electron moving through a solid.
Wrong. It is not simply a ball bouncing around in between a bunch of larger balls.
Forget the whole spherical, silvery ball thing. It doesn’t exist in a solid. There are
several ways to see this; I will discuss a few of them. The first hint that electrons in
solids are different comes from the uncertainty principle. As discussed in the previous
sections the band momentum k is a good quantum number. You have shown that each
electrons occupies a well defined momentum state with a very small volume. Since
Ak is small, the uncertainty principle states that Ax must be large. Indeed for a good
metal the wave function can extend over almost a millimeter! There is however a more
mathematical approach to express these ideas. The first is to ask the question: ‘What is



the momentum of an electron in a solid?’. To answer this question we should evaluate
the expectation value of the momentum operator for a ‘band’ electron

(p)= <wk

To evaluate the right-hand side, we make use of the tight-binding ansatz Eq. This
gives the following:

ﬁ.v‘ w> (1.59)
1

B =13 bR R Vb, (- R (1.60)

R,R jn,n’
This can be simplified a bit to,

> h * * > =g > > PP
()=~ Z bbawl, (F = RV, (7 - R)e *F)

L R',Rn,n’

_h > bybyyy (F- RNV, (F - R)e (1.61)

Rn,n’
* t |3 t
= 2 biba (it [Bl i)
nn’
which shows that the physical momentum is a complicated sum of expectation values

and not simply equivalent to the crystal momentum hk. Finally the mass of the electron
has changed. For free electrons we have:

2712
E= Z k (1.62)
m,
The electron mass is therefore equivalent to
1 1
—= hivlek (1.63)

A similar expression can be used to approximately define the mass of electrons in solids.
This can be seen by writing down the Taylor expansion for the electronic dispersion,

e(k) = e(ko) + 1 i 02—6 (ki = ki)* + ... (1.64)
25\ ),

By comparison with Eq. we see that the second order term can be used to define

the band mass of the electron as,
2 2
<0§> _f (1.65)
Oki keky mp;

To summarize, electrons in solids are not the same objects as free electrons. Elec-
trons in solids are therefore often called quasiparticles. These quasiparticles come in
many more flavors than just simple electrons. Quasiparticles can become very light
or very heavy and they can even have fractional electron charge. The development
of these ideas in the early 1930’s, 1940’s and 1950’s eventually led physicists like Hans
Bethe and Richard Feynman to the formulation of an exact theory of electromag-
netism (quantum electrodynamics or QED). It is this theory that allows the exact
calculation, with many digits accuracy, of the (vacuum) values of the electron charge
and mass quoted at the beginning of this section. Feynman’s formulation of QED
in turn proved to be extremely useful in the formulation of a complete theory of
electron-phonon superconductivity. We will return to this topic at the end of the
course. Since its inception the term quasiparticle is now applied more generally in
the context of condensed matter physics. The low energy excitations of a solid can be
similarly viewed as quasiparticles. Basically any low energy excitation (literally, an
excited state of the solid) that can be quantified with a quantum number (typically
momentum) and which has a long (- «) lifetime can be viewed as a quasiparticle.
Probably the best known quasiparticle, other than the quasi-electron, is the phonon.
This is a low energy coherent vibration of the lattice. Just like the electron, phonons
follow a dispersion relation and provide a unique fingerprint for each and every solid.
In some sense phonons are the solid state equivalent of the rotational and vibrational
levels of molecules and their dispersion forms from these levels in much the same way
as the electronic dispersion from the atomic orbitals. Other quasi-particles that we
will encounter during this course are the polariton, the spinon and the boguliubon.
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EXERCISES I
ELECTRONIC STRUCTURE OF SOLIDS

In the following set of exercises we will discuss some problems that discuss either basic condensed
matter questions, or are related to solving tight binding problems.

THE FREE ELECTRON MODEL

In this exercise you will work through a derivation of the free electron model. The
aim of this exercise is to remind yourself of some important concepts concerning
the electronic structure of solids in momentum space. The free electron model starts
from the opposite limit compared to the tight-binding approximation. We consider
electrons moving through the ‘top’ of the atomic potential (Fig. [T.4). In this situation,
the atomic orbitals are not a good starting point to construct the Bloch wavefunctions.
Instead, we assume that we can use plane waves as a basis for our Bloch wave function,

> 1 it
y(r)=—= > aze"” (E1.1)
#= 77 S
As before, we expand the atomic potential in Fourier components:

U@ =S Uge® (E1.2)
G
¢ A Show that the Schrodinger equation leads to:

h? i 0O s
S D ka4 Y Ugage ™07 = ) a7 (E1.3)
i ﬁlf '

‘B Show that this equation leads to the following relation between the Fourier compo-
nents of the Bloch wave:

thZ
(ﬁ—é'k) a,;+ZUG»a,;75:0 vk (El-4)
G

( Show that for a weak potential (U = 0) you end up with,

h2k?

~— E1.5
b= (EL.5)

Note that in this case you have found the solution corresponding to the following
Schrodinger equation,
2
- 9200 = Eotr (EL6)
2m
with ¢(r) a plane wave.

THE KRONIG-PENNEY MODEL

In the previous exercise you derived the ‘central equation’ for the nearly free electron
model. In this exercise we will look at arguably the simplest model of a condensed
matter system (the Kronig-Penney model), that gives a first idea of how the electronic
structure of solids comes about. = The Kronig Penney model consists of a chain of

a

>
Figure 1.8: Dirac comb poten-
tial with lattice spacing a. The
strength of each d peak is A.

atoms (in 1 dimension) where the atomic nuclei are replaced by a Delta function
potential (see fig.[1.8). The lattice potential is thus given by,

Ux)=A i d(x-na) (E1.7)

Nn=—o0

18



<A Consider a finite chain of 2N+1 atoms (i.e. n = -N...N) with periodic boundary
conditions and show that the Fourier components U of U(x) are given by:

Ug=— (E1.8)

Hint: Use the fact that 3V, cos(Gna) = N.
‘B Show that the a(k) appearing in the central equation (Eq. [E1.4) can be written as:

2mA - fk)
k) =- E1.9
a(k) a2 (E1.9)
(C Show that f(k) has the property,
(k) = f(k=27n/a) (E1.10)
‘D Show that the expression in Eq. is equivalent to the condition,
2mA 1
_ =1 (E1.11)
ha Z (k= 2y _ e
€ definee= % to show that,
Z 1 _a sin(Ka) (E1.12)
~ (k- %)2 - % 2K cos(Ka) - cos(ka)
Hint: use the following relation: 3, 1/(nm + x) = cot(x)
‘F Show that € and k have the following implicit relation,
cos(ka) = cos(Ka) + i sin(Ka) (E1.13)

Show that this relation implies energy gaps in the E vs. k relation. These energy gaps
are the band gaps discussed in the lectures.

COHESION ENERGY

In this exercise we estimate the gain in kinetic energy that is partly responsible for the
cohesion energy of a solid. One of the factors contributing to the cohesion energy of
solids is the kinetic energy gain arising from the opening of band gaps. In this exercise
we estimate the kinetic energy for electrons in a 2D simple, square lattice.

k
y (11/a, Ti/a)

2 1

Figure 1.9: 2D Brillouin zone of
the simple square lattice.

¢ A Show for a simple square lattice in 2D that the kinetic energy at a corner of the first
Brillouin zone (point 1) is larger than at the midpoint of the side-face of the Brillouin
zone (point 2) by a factor of 2.

‘B What is this factor for a 3D simple cubic lattice?

(C Give a condition that determines whether a divalent metal will be an insulator or a
metal.”® 19 Hint: in the previous exercise we have seen
that a band gap U opens between different

THE DENSITY OF STATES bands at the zone boundary.
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Figure 1.10: Unit cell of YBCO
with different elements indicated.
The unit cell consists of a stack of
alternating 1D CuO chains and 2D
CuO, planes.

The density of states is a fundamental quantity related to the electronic band structure.
The density of states measures how many "quantum states" are available in a solid,
per unit of energy. This important quantity determines many properties of solids (for
example, the specific heat, resistivity etc.). In this exercise we will derive the general
expression for the density of states in D dimensions.

The number of states per unit energy, R(E), is defined as:

RE)=Y (E1.14)
k
where the sum runs over all k such that e(k) < E. Use the fact that in the limit V - o,

> > (ZZ)D / &k (E1.15)

k

to show that in the free electron model,

LPm®> D2
= 2020z P

R(E) (E1.16)

Hint: the volume of a D dimensional sphere is cpkP.

The Fermi energy, Er, is defined as the energy separating occupied from unoccupied
states (at T=0). Show that for a system with N, electrons,

2P,
e= . E1.17
Q)P CDKE ( )
Use the definition of the density of states (p(E) = dR(E)/dE), to show that,
Er D
Egmin = 2/ dEQ(E)E = ——N,Er. (E1.18)
' 0 D+2

TIGHT-BINDING BANDS OF YBa,CusO;_s

The HTSC cuprates are a family of materials consisting of many different compositions.
One famous example is YBa,Cu40;_5. By changing the oxygen content this material
can be tuned from an insulator to a HTSC superconductor with T, = 97 K.  The unit

— G0

Chams

”"?b«x@

cell consists of "chain"-layers (top and bottom of the unit cell) separated by BaO layers
from the CuO, plains (central two layers separated by Ytterbium). The BaO layers
are pretty good insulators and electronically separate the other layers. The result is
an electronic bandstructure consisting of nearly independent quasi 1 dimensional
Cu-O chains and quasi 2 dimensional CuO, planes. In the following exercises we will
calculate the most important features of the bandstructure using the tight binding
approach. Note: the structure of this exercise is typical for an exercise you may be
expected to solve during an exam.

20 1 a solid the 4s-orbital bas a lower en- A We will be interested in the highest occupied band only. Which orbitals do you think

ergy compared to the 3d-orbital and i com-
pletely filled.
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are relevant? Draw the unit cell of the Cu-O chain and indicate for both Cu and O the
orbital that is likely most relevant®.



‘B Show that from the tight binding assumption it follows that:

(Ex—€p—=LBpp) B (ﬁpd + 2 R0 eﬂ;.ébﬂpd(ﬁ))] [ b } =0

. > (E1.19)
~ (i + S €5, (B (B - €a=Baa) bi

Note that some of the overlap integrals are neglected. Can you give arguments why?

(C Show that the eigenvalues of the matrix above are:

CEg+Ep 1 | -5 .2 (ka
_212\/(6d—5p)2+16rpdsm (E (E1.20)

E

[l

Assume that nearest neighbor hopping is the only relevant coupling.

‘D Discuss how the case & = &, compares to the 1s-orbital case discussed during the lecture.
Make a plot of the bandstructure. Will the chains be metallic or insulating?

Discuss what happens in the opposite limit where |&, — 4] >> ¥pq-

Sketch the CuO, plane and indicate the unit cell.

QO N ™

How many bands do you expect to count in figure|1.11p Why are there exactly this
many bands?

Figure 1.11: Left: tight binding
bandstructure of the CuO,-plane
along high symmetry directions.
Right: First Brillouin zone with
high symmetry point labeling.

I%‘B ri “oum 2 oo;)
e
_ lalwels |

JH It turns out that there is only one band crossing the Fermi level (see fig. . In the
following we will calculate its dispersion. Based on the unit cell you sketched in F,
which of the orbitals sketched in Fig. do you expect to have the largest overlap?
Draw the unit cell again, but now with the 3 relevant orbitals for the band crossing
the Fermi level. Indicate the relevant tight-binding parameters (e.g. €,, €4, 8y and ¥pq)-
What can you say about the relative sign of 8,4 and ¥4 ?

J  We are now ready to solve the problem. Follow the same route as in Exc. 5B to show

that:

(Ek _ép) _ﬁpxpy Al bpx

Bpepy  (Er— £p) A, by, | =0 (E1.21)
Aj Ay (Ex—€2) by

For simplicity set 3, , = 8., = 0 and solve the above matrix equation. Show that
there are 3 solutions (as expected):

EYP =¢, (E1.22)

Eq+E . - . . k
Ef = Ed;E" * ;\/(ed—ep)2+l6x§d [sz (k)(?a) +sin’ (%a)} (E1.23)

HINT:ypq = ¥ap-

and

J Take e,=2 ¢V, (e4-¢€,) =1V and rpq = 1.5 eV. Plot the bandstructure along the high
symmetry directions. Can you sketch how the Fermi surface changes as you shift the
value of ¢, from 0 to = -3 eV?

21



Figure 1.12: 2p and 3d orbital
probability distributions.
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ELECTROMAGNETISM MATTERS

Optical properties of solids.

KEYPOINTS:
g5 In solids photons behave as particles dressed with polariza-
tion clouds

g5 The optical response of a solid is a sensitive probe of the
electronic structure

g5 The classical Drude-Lorentz model captures the interaction
between light and matter.



21 Note that all subsequent equations are
written in the C.G.S. system of units. To
convert them to S.I. units, replace 47 by
1/eoc, Esy. by cEccs. and finally ¢ by
47/ug. The C.G.S. units are standard use
in optical spectroscopy.

22 With ‘total’ I mean charge or current due
to sources inside and outside the solid.

24

2.1 Introduction

He study of solids is largely based on the measurement of their electronic or mag-
T netic properties. Simple examples include the resistivity of a material, which
enables us to distinguish between metals and insulators, or its magnetization. Most
modern probes of condensed matter systems (angle resolved photoemission spec-
troscopy, optical spectroscopy) make use of the interaction between light and matter
or between the electrons themselves (such as in scanning tunneling spectroscopy).
The reason that these probes are most useful is simple: the interaction keeping solids
together is electromagnetic as well. In other words, the Coulomb interaction keeps
crystals together and the most effective probes directly couple to this interaction.
In later chapters I will discuss the origin of magnetism and superconductivity and
observable properties related to them. Since these properties are electromagnetic
in origin, this chapter will provide you with an overview of the electrodynamics of
solids. Unfortunately, a derivation of the full quantum mechanical description is quite
laborious and not very insightful. Instead we will stick to a classical description. At the
end of this chapter I will try to give you some feeling where the quantum mechanical
description deviates. At the same time this will show that the quantum mechanical
picture is mathematically almost equivalent to the classical one. Because of this reason,
optical properties of solids are to this day most often described using the pre quantum
mechanics Drude-Lorentz model. In the following all fields, currents, charge densities
etc. are implied to be position and time dependent if not written explicitly. Parts of
this chapter are based on published notes{2], which I wrote based on lectures given by
Prof. Dr. Dirk van der Marel during the XIth summerschool on strongly correlated
electron systems in Salerno, Italy.

2.2 Maxwell’s equations in the presence of matter

It is quite easy, in principle, to write down Maxwell’s equations for a solid with micro-
scopic granularity®':

V-é= 47fgmitraa (21)
Uxé=_t 95, (2.2)
c ot
v.b=0, 2.3)
Uxho 10,470 (2.4)
c ot c

Here & and b are the microscopic electric and magnetic fields respectively. gpcr, is
the total microscopic charge distribution and j., the total microscopic current
distribution 22. You could imagine chopping up a crystal into subunits, each with its
own microscopic charge and current density. Indeed the smallest sensible unit would
be a unit cell. The charge distribution for a collection of point sources with charge g;
can be written classically,

Qmicm = Z 1115(7’ - ?i)a (25)
or quantum mechanically as,
Omicro = _eW*(F)w(?) (26)

Equations D.4) are however not very practical to work with. As a first step we will
rewrite them in a more familiar form. To this end we average the fields, charge and
current distributions over a volume AV,

> 1 >\ 133
Qtota[(r) = TV Qmicro(r + 7’/ )dsrl, (27)
AV
R L
]total(r) = TV / ]micro(r +r )dsr > (28)
AV

and similarly for E and B. This is sensible under the condition that ap < AV <« 2mc/w)?
where ay is the Bohr radius and w the frequency of light. What this inequality is telling
us is that the interaction between light and matter is such, that details of the precise
charge distribution or current density on length scales comparable to the wavelength
of light are important. This is an equivalent expression of the diffraction limit. At the
same time it doesn’t seem to make sense that the macroscopic properties are sensitively



dependent on details of the atomic nucleus. Using these averaged charge and current
densities we arrive at the standard Maxwell equations,

V. Etotal(Fy t) = 471()total(F: t)) (29)
> 103
V x Eprai(ryt) = == =B, 1), (2.10)
cot
V- B = 0, 2.11)
> > 1 () > > 4~ >
V x Btota[(ra t) = ; &Etoml(r: t) + T]total(n t) (2'12)

These relations are valid both inside and outside the solid. In order to see how matter
interacts with propagating electromagnetic waves we have to distinguish between
induced sources and external sources. We write ftota, Efm +find and Qutar = Qext + Qind-
Both the induced and external charge distributions and current densities have to obey
the continuity equations separately,

> 0
V- ]ind/ext + &Oind/ext =0. (213)

The continuity relation is very useful as it allows us to focus on just the current density:
if known, the charge density follows. There are three different sources for macroscopic,
induced currents that we can distinguish,

> = 0P >
Jind = Jeond + 5% +cV xM. (2.14)

The first term on the right hand side, jwnd, corresponds to the response of free (unbound)
charges to an applied field. To understand the origin of the second term we refer to
Fig. We will mostly consider time varying electric fields (e.g. photons) in this -
Mii .

chapter. Imagine a collection of atoms in a given volume. These atoms consist of both field ‘ o
| ik

.

positive (red) and negative (blue) charges that will respond to the electric field to form

a dipole moment. Since the electric field is time dependent, the dipole moment will

be time dependent as well and a corresponding oscillating current will develop. This e

current is described by the second term and is often referred to as the bound charge cloud \ l

response. Physically it corresponds to a change in the total polarization, p. Finally,

we include a term representing a current due to (induced) magnetization. Note that Figure 2.13: In a time varying electric field
. . . . . current has to flow to accommodate the

this last term is purely transversal (the divergence of a rotation is always zero) and so changes in dipole moment.

is easy to distinguish from the other two terms. It is also most often negligible and

we will not spend much attention to it. Since the induced free charge current due to

photons is necessarily transversal, V - fcmd =0, we can use the continuity equations to

show that the induced free charge density has to be zero and as a consequence that the

total induced charge density,

Qind = -V.P. (215)
It is sometimes convenient to introduce new fields
D(#,0) = Eoy(F,t) = E(F, 1) + 47D (7, 1), (2.16)
A, t) = BG, 1) - 4nM (P, t), 2.17)
which are known as the displacement and magnetic fields? so that using equations 2 As a matter of bistoric perspective, the B
(2.14{2.17) in equations (2.9) and (2.12) we find, field was originally known as the magne-
N N tizing field (i.e. the field that induces a
V- D(1,t) = 4m0x(7, 1), (2.18) change in the magnetization) and the H'
. 10 » dar» 4ot > field as the total field. The latter is thus the
V x H(;) t) =- &D(i t) + 7]6xt(;7 t) + 7]amd(F> t) (219) actual ‘magneric)ﬁdd'
c c c

These equation can be simplified a little bit if we restrict ourselves to the interior of
the solid where the external charge and current density is by definition zero. Some
reshuffling allows us to cast the Maxwell equations in almost symmetric form:

V.D(#t) =0, (2.20)
V.BF 1) =0, (2.21)
VXA = - 35(?, )+ @ifond(?, t), (2.22)
cot c
> > 1 0 > >
VxE(r,t) = ———B(r,1). (2.23)
c ot

From the Maxwell equations we can derive the wave equations describing the propaga-
tion of electromagnetic waves in a medium. To make this possible we need to make
an assumption about the relation between applied fields on the one hand and induced
currents on the other. This is achieved by applying the ideas of linear response theory.

25



24 There is one unfortunate aspect of using
C.G.S. units: in these units ey = fip = 1. In
modern electromagnetism, the light speed
18 not a fundamental constant, but ¢ =

N

25 Spatial inbomogeneity, in particular in
quasi 2D materials, can result in interest-
ing optical properties.
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2.3 Linear Response Theory

Linear response theory is really an assumption about the nature of response functions.
The theory is widely applicable also outside the current scope. It is not really a theorem
(exceptions are well know), but for our purpose we will cast it in a form that makes it
look like a theorem:

The response of a system to a perturbation s linearly proportional to this perturbation.

Well known (and very useful) exceptions to this rule make up the field known as
non-linear optics. Our theorem will hold if we do not make our applied perturbations
too large. In the case of optics this means that it is alright to use a laser as long as we
keep the power low enough. To see the power of linear response theory at work, we
assume that the response of the induced polarization, magnetization and current are
linear in the applied fields:

P=y,kE, (2.24)
M = xuH, (2.25)
J = E. (2.26)

The proportionality constants are called susceptibilities. These are measures of how
susceptible a given medium is to respond to an applied perturbation. Note that the
electric field and currents can be complex quantities. The susceptibilities we have
defined above are however real numbers. Unfortunately, the notation used in the
description of the electromagnetic response of solids was historically developed from
empirical observations. As a result, the proportionality constant y; is instead better
known as the conductivity o. The other two susceptibilities are also better known in a
different form. These are not simply renamed symbols:

e=1+4my, (2.27)
is known as the (relative) dielectric permittivity. The second quantity,
u=1+4ny, (2.28)

is called the magnetic permeability. Using these two expressions we can rewrite the
responses as:

p-t-1p (2.29)
4r

> -1_ >

m=F1p (2.30)
4r

] = oF. (2.31)

With these definitions the relations between the displacement field and the electric
field and the magnetic and magnetizing fields become:

DG, t) = e(F, EF, 1), (2.32)
H(t) =™\ 7, DB, 1), (2.33)

There are a few things to note. First of all, in vacuum ¢ = 0, € = ¢ and y = yp where the
latter are the well known fundamental constants?*. In principle, the response functions
should depend on both position and time. For example, the dielectric permittivity is a

. > .. . .
response function that connects the external field E,,; at position 7 and time ¢ with the
field E at all other times and positions. So in general,

t
Epu(7,1) = / / &7 LEEF A dt. (2.34)

It turns out that in most solids we can assume the response function to be homoge-
neous®. With these definitions in place we are now in a position to formulate the
wave equations in the presence of matter.



2.4 The wave equations and the polariton

To derive the wave equations, we start by taking the curl of Eq.

Tx(VxE) =L@ xB) (2.35)
c ot

Using standard vector relations®® and by noting that since V - E =0in asolid we can
write,
VE=F Oy, (2.36)
cot
Next we make use of the third Maxwell relation, Eq. We first rewrite it using the
linear response relations as:

Uxf= S, 4mop (2.37)
c ot c

and then we plug it back into Eq. to obtain an equation depending on the electric
field only:

2z HE PE  Amuc OF
VE=Gwt e u 239
a similar exercise gives:
N S >
v2p < HECH Amuo O (2.39)

+
¢ ot ¢z ot
These are the wave equations of electromagnetic radiation in the presence of matter. I
leave it to the reader to verify that these expression reduce to the well known wave
equations of EM-fields in vacuum.

The two wave equations, Eq. [2.38]and 2.39} determine the propagation of waves
through a medium. The exact solutions can be very complicated, depending on the
boundary conditions and other complicating factors. We will not consider such cases,
but instead use the simple case of an infinite medium. In that case we can take a simple
plane wave as a possible solution to the wave equations. In what follows we will only
consider the propagation of electric fields. The plane wave form for the electric field is,

E(F,b) = Ege™@7, (2.40)
Inserting this into Eq. and working out the derivatives gives:

> 2 > 1 >
= M MATHOW (2.41)
c? c?
We can eliminate the electric field and are then left with a relation between the
frequency and momentum of the plane wave,

w= R (2.42)

u (€+ m)

At this point it is useful to introduce complex response functions. This is really a
matter of redefining some quantities. So far we have worked with the two real numbers
¢ and 0. We rename these to €; and o;. We then introduce the complex dielectric
function ¢ = ¢; +i¢; and the complex conductivity ¢ = 0 +i0>. From Eq. [2.42] we see
that if we take ¢, = 47o1/w, we can rewrite the dispersion relation as,

w=——yq (2.43)

We could also have opted to introduce the complex conductivity instead, but this form
is more compact and has a nicer physical analogy with the result obtained in vacuum.
In fact, the complex conductivity and dielectric function are really equivalent in that
they are related according to,

PRI (2.44)
i

Equation [2.43|is one of the fundamental results of this chapter. Let me reiterate
its meaning: it is the dispersion relation for electromagnetic waves (photons) in a
solid. It is the equivalent of the dispersion relation for electrons in a solid. Of course,
the description is purely classical and there are no hints in our description of the
underlying microscopic principles that govern the behavior of electrons in solids.
Instead, all material related properties are lumped into a single complex dielectric
function?. I have glossed over several details in the derivation that will simplify Eq.

RA3

V-E=0 by making use of the lin-
ear response equations

26 e Vx(Vxf)=V(V-f)-V2f.

27 It is in fact not such a bad approach: the
dielectric function can be calculated in a
quantum mechanical approach. The re-
sults of this chapter can then be used with-
out further modification. This i8 a conse-
quence of the fact that the wavelength of
light is large compared to the microscopic
length scales.
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Kramers-Kronig relations

A fundamental principle in physics is the principle of causality: an effect cannot
precede its cause. This principle provides us with very useful relations between
the real and imaginary parts of response functions. The derivation is not too
complicated and can be found on e.g. wikipedia (https://en.wikipedia.org/
wiki/Kramers?Kronig_relations). The principle of causality when applied to the
electromagnetic response functions can be formulated as,

Jt) = / t M(t—t)E )dt .

Where M(t-t' < 0) = 0. This is simply a restatement of the causality principle: we

switch on a driving force (E(t')) at time ¢t —t' = 0. So, before this moment there can be no current. This statement can be
used to derive the Kramers-Kronig relations for the complex optical conductivity:

o(w) = %‘P de’

o W =W
and
0‘2((1)):—1(13/ Jl(w)dw/.
T e W —Ww

where P denotes the Cauchy principal value. From these considerations one can also show that o(-w) = 0" (w), which
implies that 07(-w) = 01 (w) and 0,(-w) = -0(w). These relations between the real and imaginary parts of the optical
conductivity are examples of the general relations between real and imaginary parts of causal response functions
and they are referred to as Kramers-Kronig (KK) relations. They can be extremely useful both experimentally and
theoretically. For example, it may be straightforward to calculate the real part of the optical conductivity. The imaginary
part can then be obtained by making use of the Kramers-Kronig relations. These relations in their general form were
independently derived by Hendrik Kramers (Dutch) and Ralph Kronig (German) in 1926/27. Later in life they both
held appointments at the TU Delft. Image credits: wikipedia.

 As pointed out previously (Eq.[2.34)) the dielectric function in principle depends
on position and time.

» An equivalent formulation can be obtained by using the Fourier representation of
the EM fields. In this formulation é = &(, w)

 Since g o< 1/2 and since A >> a with a the lattice constant, the momentum of a
photon is really small compared to typical electron momenta.

» We will concern ourselves in the remainder of this chapter with optical properties
of solids. Therefore we can safely assume g = 0.

* Hence, Eq. is an implicit solution: w appears on both sides of the relation.
+ In most solids u is really small (10-4) compared to é.

+ We have no idea what é(w) looks like and so we haven’t really solved anything yet.

To end this section I want to draw your attention to the following. Equation [2.43|is
equally applicable outside solids. In other words, the dispersion relation of photons in

28 Remember that we are using C.G.S. units vacuum is?,
and therefore €y = po = 1. 2mc
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w=cq " (2.45)
In other words, photons travel through vacuum at the speed of light and their frequency
is inversely proportional to their wavelength. Hopefully, you are familiar with this
result. We can use Eq. [2.45)to define the mass of a photon using the same relation as we
used in chapter(see Eq. . Fortunately, taking the 2" derivative of Eq. with
respect to momentum equals zero and we find that the photon has no mass. Here comes
the punchline: inside a solid we should really use Eq. and the 2™ derivative is
not necessarily equal to zero anymore. Put differently, photons propagating through a
solid can acquire an effective mass; inside a solid photons transform into quasiparticles!
The source of this transformation is found in the dielectric function. Since the real
part of the dielectric function is related to the charge susceptibility (Eq. , which
relates the electric field to the induced polarization (Eq. [2.24), the effective mass can
be seen to find its origin in the dressing of the photon with a polarization cloud. The
resulting quasiparticle is therefore called polariton.


https://en.wikipedia.org/wiki/Kramers?Kronig_relations
https://en.wikipedia.org/wiki/Kramers?Kronig_relations

2.5 Polaritons

In this section we discuss some properties of electromagnetic waves propagating
through solids. As mentioned above, a polariton is a photon dressed up with the
excitations that exist inside solids. There are different ‘types’ of polaritons. For example,
one can have phonon-polaritons which are photons dressed up with lattice vibration
related polarization clouds. One way of understanding the changes in the photon fields
is by making use of the modified dispersion relation. Since our dielectric function

depends on w, we write,
v HE(W)w
jq| = VHEELE C( » (2.46)

You are probably more familiar with the (real part of the) refractive index,
M(w) = n+ik = \/pe. (2.47)

In all cases considered here n > 0 and k > 0%. We also note that Im(e) = 0 but it is
possible to have Re(e) < 0. If k > 0 the wave traveling through the solid gets attenuated
according to,

E(F,t) = Egele0-119, (2.48)

The extinction of the wave occurs over a characteristic length scale d called the skin
depth,
c c

d=— = .
wk  wImy/pe +14muo/w

Note that we can have k > 0 if Im(¢) = 0 and Re(e) < 0 so that the wave gets attenuated
even though there is no absorption. In table[2.1]we indicate some limits of the skin
depth. To get a better feeling of the properties and relevance of polaritons, we need a

(2.49)

Insulator %« g d=-< /4
w 2moq u
4moq ~ c
Metal T ] d= =
4oy ___c A
Superconductor Tl =-55 J= 7

model description of the dielectric function. The model we will use during the course
is known as the Drude-Lorentz model. It actually consists of two ideas. The first is
known as the Drude model, while the second is known as the Lorentz model. They
are however nearly equivalent (the Drude model follows from a particular limit of
the Lorentz model). In the next section we will discuss some of the properties of the
Drude-Lorentz model.

2.6 The Drude-Lorentz model

The Drude model is one of the earliest attempts to describe the electromagnetic
response of a metal based on a microscopic picture. In 1900 Paul Drude published an
attempt to describe the optical properties of solids based on the application of the
kinetic (Boltzmann) theory to electrons (which had been discovered only a few years
before in 1896 by J.J. Thomson) in the presence of electromagnetic fields.

He considered a very simple model of a solid: it consisted of negatively charged
particles (electrons) that were moving on a positively charged, featureless background.
Note that the nucleus (and thus the precise structure of the atom) was not discovered
until 1911. He assumed that under the influence of an electric field some electrons
would be displaced relative to the positive background (see Fig. resulting in a
current. Drude’s major breakthrough was to apply the kinetic theory of gases to the
ensemble of electrons. He imagined that electrons would move around and bounce of
each other, much like atoms in a gas would. This led him to realize that there would
be a characteristic (temperature dependent) time between two collisions. This collision
time, T, can be described in a newtonian picture as a damping force acting on the
electrons. This damping force depends on the average velocity of the electron and a
proportionality constant, I', known as the scattering rate:

F=-mID (2.50)
From these considerations it follows that the conductivity should be of the form,

. ne* 1
6= —

. 2.51
m I'—iw ( )

2 Classically these are the only physical so-
lutions. A current, ‘bot’ field of research
concerns so-called meta-materials (with n
or k < 0) that are used to make invisibility
cloaks.

Table 2.1: Some limiting cases of

the general expression Eq. (2.49).
A in the last line is the London pen-

etration depth.

0000
0000
0000
0000
0000
0000
++ + +

R

Electric field

Figure 2.14: Negatively charged electrons
(blue) are displaced relative to a featureless
positive background (red) under the influ-
ence of an electric field.
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Figure 2.15: Real part of the opti-
cal conductivity as function of pho-
ton energy. The plasma frequency,
wp, and scattering rate, 7, are indi-
cated.

30 A useful set of conversions between differ-
ent units that i8 worth remembering is: 1
eV = 8065 cm™! = 11604 K.

31 For those of you familiar with it: the Kubo-
Greenwood formula is closely related to
Fermi’s golden rule.
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The pre-factor is often redefined as the plasma frequency w?, = 4mne?/m. The derivation
of this expression is left as an exercise (see Exercise[T). The resulting (frequency depen-
dent) real part of the optical conductivity is plotted in Fig.2.15°. Note that the zero
frequency limit of the optical conductivity is the inverse of the resistivity. In 1905, in
between deriving the co-variant formulation of Maxwell’s equations and working out
a ‘“Theory of the electron’, Hendrik A. Lorentz extended Drude’s model to include the
response of bound electrons. In addition to the damping force introduced by Drude,
Lorentz included a restoring force that led him to the following expression for the
optical conductivity,
; 2
bw)= — (2.52)
iwl - (Q2 - w?)

where f is the strength of the optical transition and Q is known as the resonance
frequency. This expression reduces to the Drude result in the limit Qy - 0.

Remarkably, these results remain approximately correct even in the quantum
mechanical derivation. Unfortunately, deriving a proper quantum theory of the optical
response of solids is cumbersome. We will not attempt such a derivation, but instead
we take a quick look at the result. The quantum mechanical formulation of the optical
conductivity is known as the Kubo-Greenwood formula:

(2.53)

R ie?
Uaﬁ(q>w) = 7 Z

n,m=n

eP(O-En) { VagVgt, Vel Vg
a%a YU,

Won LW =Wpn 10 W+ Wy +10

Here the subscripts «, 3 indicate the principal axes of the crystal, 8 = (k3T)™! in the
exponent and d — 0. Furthermore,

v = (Y,

g

Do | W) (2.54)
is known as the dipole-moment corresponding to the optical transition of an electron
from state |¥,) with momentum k to a state |¥,,) with momentum k +¢. Finally,

Win = Ep — Ey (2.55)

is the energy separation between the two states |¥,,,) 3!. The Kubo-Greenwood for-
mula describes optical excitations of the ground state of a solid, while properly taking
transition probabilities and quantum statistics into account. The wavefunctions and
corresponding eigenenergies can, for example, be taken from a tight binding calcula-
tion, but they can also be obtained from more complicated theoretical constructs. It
can be shown (with some redefinitions that are at this point unimportant) that an
equivalent formulation is given by,

. iw Q2
Ogu(q,w) = — —m 2.56
(@) vivd Z 1w — (w2, - w?) (2:56)

n,m=n
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This expression is very similar to Eq. apart from the sum. This sum runs over
the different electronic states and therefore corresponds to a sum over all possible
interband transitions between occupied and unoccupied bands (see Fig. . The p
Lorentz model is therefore a useful and good description of any solid if we take several
terms (Lorentz oscillators) corresponding to Eq. Note that the Kubo-Greenwood
formula only describes transitions between different bands (m = n). It is also possible
to derive an expression for intraband transitions, which in some limit provides a
justification for the Drude result. The functional form, Eq. 2.51]is however only a good
description of real solids in the limit of low frequency, high temperature and in the
absence of significant electron-electron or electron-phonon interactions.
Combining the Drude and Lorentz model we finally obtain,

Conduction
band edge
Valence band edge

. w1 iwf? ,,
dwy=-L——— - fz (2.57) 3 .
An Ty —iw 1wl = (Q5, - w?)

i

From this we can immediately determine an expression for the dielectric function, Figure 2.16: Direct interband transition be-

) tween the occupied valence band and the

. Wy 47 f;z unoccupied conduction band. The onset of

éw)=1- pr p > > (2.58) the transition is indicated by w,.
ww+il") S iwl; - (QF; - w?)

We conclude this section by plotting the Drude and Lorentz oscillators for the dielectric

function in Fig.

2.7 'The optical properties of solids

With a model for the dielectric function in place, we can return to our discussion of
the polariton and its relevance to the optical properties of a solid. Keep in mind that
the allowed solutions for electromagnetic waves in a solid are given by Eq. In
combination with the Drude-Lorentz model, Eq. we can now solve for the proper
relation between frequency and momentum of the EM waves. Note that if the dielectric
function is negative, the polaritons become exponentially damped (the refractive index
in Eq. 2.48] will be imaginary). This implies that if the dielectric function is negative,
polariton solutions are not allowed to propagate inside the solid. We see from Fig.
that the real part of the dielectric function is negative for a finite range of frequencies
on the high frequency side of the peak in the imaginary part. The actual range of
frequencies where the dielectric function is negative of course depends on the chosen
parameters. In Fig. we show the polariton dispersion calculated for a Lorentz
oscillator for a few parameter values. The real part of the dielectric function is shown
on the left, while the polariton dispersions calculated with Eq.[2.43]are shown on the
right.  Asyou should have expected, the polariton dispersion is linear in momentum
for f =0, corresponding to the dispersion relation of photons in vacuum. For finite
oscillator strength, the dispersion is modified and acquires a momentum dependence.
Notably the modification of the dispersion is strongest close to the maximum in oy. If
the coupling between the EM wave and the electron system (quantified by f, orin a
quantum version by the expectation value of the dipole moment) is strong enough
the electrons will respond to the EM wave and will oscillate in phase. If the electron
system is driven too fast (i.e. for frequencies larger than the resonance frequency), it
can no longer follow the oscillation and will start to lag behind in phase. For photon
frequencies much larger than the resonance frequency, the electron system reacts too
slow and the photon propagates unhindered.

The polariton dispersion is intimately tied to the reflection or transmission of waves
at the interface between a solid and its surroundings. Imagine a photon impinging
on the surface of a material: depending on its energy there may or may not be a
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solution inside the solid. If there is a solution, the wave will enter the material and
propagate for a certain distance before being attenuated. If this distance is longer than
the thickness of the solid, the wave will subsequently leave the solid and continue its
journey through vacuum. On the other hand, if there is no solution the energy stored
in the wave needs to go somewhere. If the energy of the incoming wave is close to a

32 This requires finite &;! resonance, the energy will be dissipated 3 inside the solid. If on the other hand the
energy of the incoming wave cannot be absorbed in the material, the wave will be
reflected back into the vacuum. In this situation the reflectivity of the material will be
finite and the transmission zero. The reflectivity of a (semi-infinite) solid is related to
the dielectric function according to,

1-Veé
1+Vé

At the same time, the transmission in the absence of absorption is defined simply as
1- R(w). For aslab of finite thickness the transmission is a somewhat more complicated
function of the dielectric function due to the fact that we need to consider multiple
internal reflections.

We can qualitatively understand many of the optical properties of solids. First of
all, we expect a fundamental difference between metals and insulators: metals are
characterized by ‘free’ electrons and therefore the dielectric function will have a Drude
peak. Figure shows that in this case the dielectric function is negative over a
range of frequencies, starting at zero frequency; at low frequency polaritons cannot
propagate in a metal. This is equivalent to the well known result obtained from static
electromagnetism, namely that there can be no electric field inside a perfect conductor.
At higher frequencies the dielectric function turns positive and the specific frequency
where this happens (in the absence of interband transitions) is known as the (screened)
plasma frequency. Note that the plasma frequency is proportional to the density of
free charge carriers (Eq. . For a typical metal the charge density is on the order
of 10*' cm~3, which works out to plasma frequencies on the order of a few to ten’s of
electronVolts. As a result metals are not transparent. Insulators on the other hand
have no Drude peak and are typically transparent in the visible range of the spectrum.
The amount of absorption and the frequencies where a material absorbs are crucial to
determine the color of a material. For example, the difference in color between copper,
gold and silver arises mainly from a difference in the onset of interband transitions (in
the UV range for silver, in the blue for gold and in the green for copper).

R(w) =

(2.59)

2.8 Screening

I would like to point out a final important aspect of the dielectric function before
ending this chapter. You may have wondered how it is possible that solids don’t collapse
or explode under the strong Coulomb repulsion or attraction between positive and

33 Another aspect is related to Fermi-Dirac negative charges. One aspect related to this is screening. To see how screening works,
statistics: electrons are fermions and as a consider the Maxwell equation (in SI),
result cannot occupy the same space. If
you try to squeeze electrons into a small V.E= 0 (2.60)

volume an outward pressure will develop.

If we take for ¢ for the moment just two electric charges ¢, and g,, we know that the
potential becomes:

V) = 192 (2.61)
4re }T] - T'z‘

32



where 7 = 71 - 7,. This potential is simply the static Coulomb potential and at first
glance seems to make it impossible to form a solid. Somehow the strong repulsion
between the electrons is overcome. In this chapter we have seen that inside the solid
we should take instead:

v.D=2 2.62)
€o
which is equivalent to
V.E-_—¢ (2.63)
eoe(k,w)

From this we see that it is the dielectric function that may be responsible for a significant
reduction of the Coulomb potential. This is known as ‘screening’ of the Coulomb
potential. We can assume a very simple form of the screened Coulomb potential,
namely:

V() = -2 ke (2.64)

dmeor

This potential is known as a Yukawa potential. The upshot of it is that the static
Coulomb is significantly reduced in range. As a result this means that the potential
energy cost of confining a bunch of electrons to a small volume is significantly reduced.
In exercise ] you are asked to show that from Eg. follows that the dielectric
function has a k-dependent piece given by,

ki
ek)=1+ 2 (2.65)
krr is known as the inverse screening length® and can be shown to be approximately 34 ie. it corresponds to a typical lengtb scale
given by, Are o ki
Tag

where k; is the Fermi wavevector and agz the Bohr radius. This result is known as
Thomas-Fermi screening and provides an important explanation for the screening of
charged impurities in solids. More generally we observe that by comparison it follows
from Eq. 2.63|that inside a solid the bare, static Coulomb interaction changes to,

VC(E) w)

Vscr(lza w) = >
ek, w)

(2.67)

This important result shows that the excitations of the solid (captured by the response
function ¢) combine to reduce (screen) the original Coulomb potential. This result will
play an important role in Chapters 4 & 5
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EXERCISES I1
OPTICAL PROPERTIES OF SOLIDS

In these exercises you will derive some of the most used optical properties of solids. In the first
exercise you will derive the Drude-Lorentz model. The dielectric function derived here forms the
basis for the remaining exercises where you will derive the reflectivity of materials and some of
its limits.

THE LORENTZ-MODEL

Consider a static background of positive ions and bound electrons in the presence of a
time varying electron field.

<A Which forces act on the electrons?

‘B Show that the equation of motion can be written as:

0000
0000
0000
0000
++ + +

m(Q? - w? - iwD)x(w) = gE(w) (E2.1)
<: Hint: start from Newton’s equation F=ma and use the Fourier transforms of
Electric field .

x(t) = / dwx(w)e™ (E2.2)
and
E(t) = / dwE(w)e ™ (E2.3)
(C We can use the result of the previous exercise to find an expression for the complex
conductivity. We are looking for an expression of the form: j(w) = 6(w)E(w). Starting
from the definition of current density, j(t) = -nev(t), show that:
Ww? i
fwy= L — (E2.4)
47wl - (Q? - w?)
‘D How does the Drude expression follow from this? Give a physical explanation.
€ Find the band edges of the forbidden band in which no polariton solution exists.
Discuss your solution for the case I' = 0. Use this result to explain why metals are never
transparent.
2 SCREENED COULOMB POTENTIAL
In this exercise you will derive the momentum dependence of the dielectric function
assuming a screened Coulomb potential.
<A The Fourier transform g(E) of a function f() is given by,
gk) = / M FRF (E2.5)
v
35 Hint: introduce a variable x = cos(9) and Use spherical coordinates to show that this can be rewritten as®,
use k - 7 = kr cos(9). A .
o(k) = % / ¥ £(r) sin(kr)dr (E2.6)
Jo
36 Hint: use ‘B Show that the Fourier transform of the Coulomb potential V(r) = ¢?/4meor is*
1 ..
2 lim & 2
R vk = £ (E2.7)
Eokz

34

(C Show that for a dielectric function of the form
kZ
ek)=1+ % (E2.8)

the potential becomes a screened Coulomb potential of the form

Vip(F) = D92 ookt (E2.9)
Ameyr

THE FRESNEL EQUATIONS



In this exercise you will derive the Fresnel equations that describe the reflection and
transmission at an interface between two media. For simplicity we will assume normal
incidence.

Use a plane wave expansion for the electric field Eand magnetic field B in combination
with the Maxwell relation Eq. to derive the following relation between the two

fields:
=\ e(g,w)

0

(E2.10)

where we have assumed that u = 1.

Now consider ﬁgurem We have an incoming wave E; in a medium labelled 1, a

transmitted wave propagating though medium 2 labelled E, and a reflected wave E,.

At the interface we must have E +E, = Et Show that from this it follows that,

B.—B, =B, (E2.11)
Combine the previous results to show that,
> > flz >
E;-E, = -2F, (E2.12)
51
Use this to define the complex reflection,
p= 7l (E2.13)
ny+ny
and transmission ”
f= M (E2.14)
ny+ny

coefficients.

Show that Eq. follows from [E2.13|assuming an incoming wave traveling through
vacuum.

THE HAGEN-RUBENS RELATION

The Hagen-Rubens relation is a simple relation between the DC conductivity (or in
other words, the inverse of the resistivity) and the low energy (far infrared) reflectivity
of a metal. We approximate the Drude expression for the dielectric function in the
limit that wt << 1 as,

Bw) =1+12F%0 (E2.15)
Use the result of Exc. [3]to show that,
Rw)~1-,/2~ (E2.16)
O

REFLECTIVITY OF SEMICONDUCTORS

In this exercise we will consider a simplified relation between the energy gap of a semi
conductor and the reflectivity. A rough approximation for the dielectric function of a
semi conductor can be obtained as follows. Only photons with an energy larger than
the energy gap w, can be absorbed. Therefore the imaginary part of the dielectric
function (or the real part of the optical conductivity) can be very roughly approximated

by a delta function,
2

w

&) = —Li(w-wy) (E2.17)
2w

The Kramers-Kronig relation can now be used to derive the real part of the dielectric

function,

wp

aw)=1+ (E2.18)

2 _ (2
wgw

Derive an expression for the reflectivity in the limit w << w,

Figure 2.19: Sketch of the situation consid-
ered in the derivation of the Fresnel equa-
tions.
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NON-MAGNETS IN A MAGNETIC FIELD

Putting the magnetism back into electromagnetism

KEYPOINTS:
g5 A particle in a magnetic field exhibits a large degeneracy
of states.

g5 Bands in solids become Landau levels.

g The Hall conductivity allows measuring the electron den-
sity in a solid.



37 The minimal substitution ignores multi-
pole coupling contributions of the charge
distributions.

38 The magnetic field is the rotation of the
vector potential, B =V x A, where explic-
itly,

8y 2

A_loe o 2
VxA= ox oy 0z
Ay Ay A,

3 The general result for a particle mov-
ing in the (x,y)-plane can be obtained
by using the symmetric gauge, which
chooses a vector potential of the form
A= %(—Bj)ﬁ+B§c§1). It makes the math
more complicated and doesn’t add any-
thing to the discussion however.

38

3.1 Introduction

N most materials there is only a very weak response of the electron system to the
I magnetic component of the photon field. There are however many interesting
features that emerge when a large static magnetic field is applied. In subsequent
chapters we will discuss spontaneously magnetized states of matter. As an introduction
we will discuss the properties of non-magnetic materials in an applied magnetic field
in this chapter.

3.2 One particle in a magnetic field

We will consider the effect of a static, applied magnetic field on a solid or crystal that is
not magnetic by itself. As will become clear, some properties of materials show drastic
changes in the presence of a static magnetic field. First, we will consider a simplified
single particle Hamiltonian for an electron moving through a magnetic field. As a
reminder, the Hamiltonian for a single particle reads,

pz
{7 + V(r)} y(r) = Ey(r). (3.1)
2m

To include electromagnetism at the single particle level, we can make use of the
so-called minimal substitution,

p>p-A. (3.2)

o

The minimal substitution is sufficient to take the effects of electrons moving through
a static magnetic field into account®. The full single particle Hamiltonian is thus,

{@ _ 14y

- +V(r)

y(r) = Ey(r). (3.3)

We will ignore the complication of the lattice potential and consider just the problem
of an electron moving through a magnetic field. Expanding the quadratic term we

have: .
P-2AY 1 (., 29, ;. ¢;
DY S (R S P P 34

2m 2m (p c b c2 ) 34
To make progress we need to have an expression for the vector potential. We will be
interested in a magnetic field applied along the Z- direction. From the relation of the
magnetic field to the vector potential®®, it then follows that

B=B.=(0A,—0,A,)i. (3.5)

It is important to remember that the electromagnetic fields are gauge invariant: we
can change the vector potential according to

Z\—)ﬁ’:K+V‘qJ (3.6)
provided that we also change the scalar potential according to,

) 10w
0>¢ =¢ vl (3.7)
This freedom allows us to cast the problem in a convenient form. Typically one works
in the Coulomb gauge, V - A =0, but for this problem there is a much more useful
gauge, known as the Landau gauge. In the Landau gauge, the vector potential is chosen
to be¥
A = Bx¥, (3.8)

with § a unit vector and x an operator. Note that this form of the vector potential is
consistent with Eq.
We can now rewrite Eq. [3.4]as:

2
L(pz_Qﬁ.A_,_‘LzAz)

2m c c
) H2 2p2 v}

Sl By ey (B g P2 (3.9)
2m 2m mc 2mc? 2m

Now we note that the Hamiltonian depends on p, and p., but not on the conjugate
operators y and Z. As a result

[Apy.] =0 (3.10)



A particle in a magnetic field

A particle moving through a magnetic field is subject to a Lorentz force. The
particle (classically) follows a circular path if the Lorentz force is balanced by the
centripetal force. A stable orbit is found by balancing these two forces, which yields
the following relation:

v, ¢gB

F.=F > — =",
‘ t R mc

The time required to complete a full circular orbit is of course given by T = 2%X. The
€L

inverse of this period is known as the cyclotron frequency, w.. Given the above,

the cyclotron frequency is /
_ZE o
T mec'

What this is telling you is that as the field increases, the orbits become tighter and
since the speed remains constant this results in a larger number of orbits per second.

and therefore the wavefunctions must simultaneously be eigenfunctions of p, and p..

The eigenfunctions of p, are the plane waves,
Eq. implies that the eigenfunc-

1 4 tions of the Hamiltonian are also
0(y) = We’ » CAY) eigenfunctions of py ..
obeying the dispersion relation
h*k?
€k, = Tmy (3.12)

and similarly for p,.
To solve the full Schrodinger equation with the Hamiltonian, Eq. we can
now make use of the separability of the wavefunctions®. There is only a single term 4 That is, the wave function can be written
containing p, and we can evaluate it immediately: it contributes a term ¢, = h*k%/2m as Y(x, y,2) = p(x)¢(y)g(2).
to the energy. This leaves us with:

52 2p2 ﬁZ
Hy(x,y) = L%n + ;]mczxz + ﬁ

- foCﬁy] y(x,y)
mc

™V ay(x), (3.13)

A2 22 hzkz
Pe 0B 2 MY 4 o,
2m  2mc? 2m  mc

Now we note that Eq. only depends on the operators X and p,;, so that it represents
a 1D problem®'. The remaining problem is in fact a well known one, but it appears ! In the symmetric gauge this works out
unfamiliar due to the form in which it is written. If we introduce the cyclotron slightly differently. As the name suggests

frequency w, = gB/m,c and complete a square, Eieyzg’aavgj‘?bcfﬁaz’gggfab: i;?llagiltea;z

symmetric contributions for both x and y.

A2 2.2
Hu(x, y) = {Zn " %mwffcz e e (3.14)
) 2
= {px + 1mW?(A - ﬁ) ] v(x,y) (3.15)
2m 2 mw,
Finally, we define x, = hk,/mw, to find:
prol o
Hy(x,y) = [f" + —mw; (X —Xo) ] Y(x,y) (3.16)
2m 2

Hopefully, you’ll recognize this as a quantum harmonic oscillator (QHO) problem.
This is a standard problem in quantum physics, and the eigenvalues and eigenfunctions
are well known. The eigenvalues are,

1 hzk‘z‘ 2 gq. is equally valid if we bad chosen
E, = hw, (n + 7) +—. (3.17) the symmetric gauge with initial velocity
2m in arbitrary direction. The second term

. . then represents the contribution to the en-
The first term (with n =0, 1, 2, ...) represent the energies of subsequent levels of the ergy a,f;ging from the motion parallel (or

harmonic oscillator, while the second term originates in the velocity perpendicular to tangential) to the classical orbit, hence the
the x-direction®?. || sign.
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Figure 3.20: (Left) The first few wavefunc-
tions corresponding to Eq. Y, denotes
the n-th excited state of the oscillator. Note
that the center of the well corresponds to
the radius of the classical orbit. (Right) Prob-
ability functions, P, = |¥,|>. Note that for
the lowest energy, the probability peaks ex-
actly at the classical orbit, while for higher
energy levels the probability to find the par-
ticle away from the classical orbit increases.

4 If we bad used the symmetric gauge, we
would bave found that the particles de-
scribe circular orbits with radius r3 =

2 2
X Yo
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The eigenfunctions for arbitrary n are Hankel functions (the derivation of which is
beyond the scope of this course) of the form,

1 mw,\ 4 _’"Wf(XZXO)Z mw,
y(x) = \/ﬁ( prs ) e Hn(ﬁ/ p (x—xO)), (3.18)

with the Hermite polynomials, H,, given by

ned (2
Hy( = (1e 20 (e ) (3.19)
These expressions probably don’t provide you with a lot of insight, the graphical
representation is however more telling. For n = 0 the eigenfunction is Gaussian
distribution around the average position x,. The eigenfunctions for larger n are n-
modal bell-shaped curves, as shown in figure

Translating the QHO problem to our context, we have thus found that in a magnetic
field, a particle doesn’t just describe a circular orbit as in the classical case. Instead the
probability to find the particle exactly at the classical orbital (with radius x,) is maximal
only for the lowest energy level. At higher energies the wave functions become more
complex and the analogy with the circular orbit is lost*3.

So what happens when we adjust the magnetic field? Looking back to our definition
of x, to see what happens as function of magnetic field,

Xo =

3.20
mw, qB ( )

we find that with increasing magnetic field, x, becomes smaller and thus the orbit
becomes more localized. Another thing to note is that the standard deviation of our
normal distribution decreases for larger B, and thus the orbits in some sense become
more classical.

3.3 From single particle physics to Landau levels

In the previous section we discussed the quantum problem of a single particle in a
magnetic field. We now wish to make the link to solid state physics. This is, at some
level, actually not all that complicated if we make some assumptions. First of all, we
will assume that we are dealing with a metal. In that case, we can refer back to some of
the assumptions underlying the (nearly) free electron model. In other words, we can
assume that the main contribution of the lattice potential is to change the electronic
dispersion to that of ‘free’ quasi-particles, i.e. & = h*k*/2m with m not necessarily the
free electron mass. We imagine that we have solved this problem first and then add
the complication of a static magnetic field. After the first step we have ended up with
a complete set of N orthonormal solutions to the Schrodinger equation. The energy of
these solutions becomes modified according an expression similar to Eq. There is
however a crucial modification for electrons moving through a periodic potential: the
momentum becomes quantized! In other words, in the presence of the periodic lattice
potential we should have taken the quantized momentum parallel to the orbit,

ky = = (3.21)



where L, is the dimension of the crystal in the y-direction and N the number of lattice
sites along the same direction. Let’s also assume that the electron is confined to the
solid,

0<xp <Ly (3.22)
The combination of these two boundary conditions leads to:
LiL
0<N< M=ty (3.23)
2mh

This provides a maximum on the number, or degeneracy, of a given harmonic oscillator
level n. Since the area of the crystal is A = L,L,, we can substitute our cyclotron

frequency to find

N:BAZCP

() 2
e

(3.24)

Here @ is the total flux and @, = i—i

The interpretation is a bit different. We are now working in a periodic momentum
space and the electrons form bands that are clustered around specific energies. These
bands are much more confined in energy and are thus known as Landau levels. We
find that each level consists of a large number of states®. Just like a ‘normal’ electronic
band structure problem, we now start adding electrons to the state with n = 0 until we
have filled up all the available states. We then continue to fill levels with larger n until
we run out of electrons.

To see how the discussion above impacts on observable properties of materials
depends on the effective dimensionality of the material. In the nearly free electron
model in three dimensions the density of states has a square root energy dependence
(see Exc. ). This situation is sketched on the left in Fig. In the top left panel
the Fermi sphere is shown in the absence of magnetic field. The density of states
is shown in the bottom left panel. As soon as we apply a finite magnetic field this
picture changes to what is shown on the right hand side. The Fermi sphere breaks up
into cylinders* and the density of states acquires additional features. The additional
peaks in the density of states correspond in energy to the energy level of the harmonic
oscillators and have great significance for the behavior of solids in applied fields. As an

example consider the resistivity of a material. The Drude model tells you that (see Eq.

the resistivity of a metal is approximately given by,

m 1
=—= 3.25
0 ne* t ( )

is the flux quantum, a constant per electron®.

Figure 3.21: (Top left) Fermi surface for
three dimensions for a zero B-field (the
Fermi sphere). (Bottom left) Correspond-
ing density of states fin the absence of a
magnetic field. The density of states ¢ has a
square root dependence on energy E. (Top
right) Density of states for a finite B-field,
resulting in Fermi cylinders (or Landau lev-
els). (Bottom right) Corresponding density
of states. The peaks appearing in the density
of states correspond to a multiple times the
cyclotron frequency. Also note that the en-
ergy position of these peaks depends on the
applied magnetic field.

44 The factor two in the numerator of the frac-
tion i8 a reminder of the fact that we can
put two electrons in each electron state, one
with spin up, and one with spin down.

45 Note that the flux quantum ®y = 2.067 -
10715 Wh. Since 1 Wb =1 T-m?, we bave
a total of 2 - 101 states available per m?
in a 1 Tesla field. Typical electron densi-
ties for a metal are of the same order of
magnitude.

46 This is not entirely correct. The cylinders
will be deformed along the k directionin a
real crystal. The sketch in Fig[3.21]would
apply to a quasi two dimensional crystal
where the dispersion along the k, direction
i8 negligible.
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47 The latter effect is known as the de Haas -
van Alpben effect.

48 Note that some materials don’t require a
magnetic field to have finite offFdiagonal
elements. An example thereof would be a
ferromagnet.

4 Recasting our linear response expression
to Obm’s law, V =1 - R.
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The n appearing in the denominator is the density of free electrons and this is mainly
determined by the density of states at the Fermi level. If the density of states at the
Fermi level is zero (for example because there is a gap in the dispersion at the Fermi
level), it will cost a lot of energy to excite electrons and the resistivity will be high. If
on the other hand the density of states is high both above and below the Fermi level,
it will hardly cost any energy to excite a lot of electrons and the resistivity will be low.
For a metal we will have a density of states as in the lower left panel of Fig. and
the resistivity will be a certain value. Now we switch on our magnetic field and slowly
crank up the field. As the field increases the peaks in the density of states depicted in
the lower right hand panel of Fig. 3.21] will shift along the horizontal axis. As a result
the density of states will oscillate and consequently also the resistivity will oscillate.
These oscillations are known as Shubnikov - de Haas oscillations. The resistivity is
however not the only quantity that will oscillate; many other transport properties
such as specific heat and the magnetic susceptibility?” will display similar quantum
oscillations in magnetic field.

3.4 Conductivity revisited

In the previous chapter we have derived an expression for the optical properties of a
solid in a magnetic field. In Exc. [T|we found that the optical conductivity in a magnetic
field is a tensor and the relation between the current and the applied electric field is
given by,

J=CE (3.26)
with the components of the conductivity tensor,

2 : 2
wy(T-1w) Wywe

O =0y =0, Oy =—Op = ————— ———.
YT 4T - iw)? + w?] YT 4T - iw)? + w?]

(3.27)
This is an interesting result. In zero field, the cyclotron frequency w, is zero and the
off-diagonal components vanish. The diagonal components of the conductivity tensor

reduce to the standard Drude result. For a more arbitrary direction of the field we end
up with a rank 3 tensor for the conductivity,

_]X JXX ny JXZ EX
Jy| = [op Oy 0y B (3.28)
__]Z_ _02X Uzy UZZ_ _EZ_

In most cases the offdiagonal elements are zero,

(k] o O 07 [E
il=10 o, 0||E], (3.29)
Jz 0 0 o |E

If the system is time reversal invariant, the offdiagonal components have to be zero.
Since a magnetic field breaks time reversal invariance, the off-diagonal components
become finite®.

In compact notation the current is related to the field as,

_jx 4 (r—lw) W, Ex
M _‘7”{ ~w, (F—iw)} {Ey] (3.30)

wZ
e e (3.31)
An[(T - iw)? + w?]

where,

We will use these expressions for a discussion of the Hall effect in the next section.

3.5 The Hall effect

The above result turns out to be very useful in the characterization of materials as we
will now show. There is one difficulty however. Resistivity is defined as the inverse of
the conductivity, 6, so we have to invert a 3 x 3 matrix to calculate the resistance in a
B-field. The matrix equation we would have to invert has the form*

-1 .
E, Oxx Oxy Oxz Jx
Ej| = |0y 0y 0y Iyl - (3.32)
EZ JZX O—Zy O—ZZ _]Z



Inverting a general 3 x 3 matrix is not very funny, but if we choose the B-field along
a principal axis, we can reduce the problem to inverting a 2 x 2-matrix. Inverting a
general 2 x 2 conductivity tensor gives,

{"X* "w} S [ Ty O XY] . (3.33)
Oyx Oyy OxxOyy — OyxOxy Oy Oxx
For an isotropic material®® we can simplify this expression to,
Pxoﬂ: 1 [% *ﬂ (3.34)
Oyx Oy o ,%x + U%y Oxy Oxx
to obtain
o ~0yy
Oxx = % o= "F—"5- (3.35)
Uxx + ny Jxx + ny

We can now make use of Eq. to determine the resistivity®! of a material in a

magnetic field,
o r We -
7= (ool 5]

TSl T

¢ w% We |’
Now we can use the definition of the plasma and cyclotron frequencies to simplify the
off-diagonal elements and find:

(3.36)

which gives,

(3.37)

Xy — A AN T .
Qo w3 4mne?* nec
m

This turns out to be a very useful result. Imagine that we have a material in a Bfield
and we apply some voltage. The electrons moving through the material are deflected
by the magnetic field and heap up near the sides of the material. At the same time,
positively charged ‘holes’ heap up on the opposite side of the material. This imbalance
in charge density causes a voltage to appear. Note that no net current flows between
the two edges*.

Using our expression

eB
4nw, 471(7) B
= e me; _ (3.38)

B

Ey=— Jxo (3.39)
nec
we can then derive a Hall voltage, which reads®
I
Visy = RuB 3. (3.40)

From which the Hall coefficient R = —nia follows. The Hall coefficient depends on a
single material specific quantity: the electron density n. Therefore, we can measure
directly the electron density if we measure the Hall voltage in an applied magnetic
field. It turns out that band structure plays an important role in determining the Hall
resistance. For example, it is possible that the Hall voltage changes sign (i.e. is opposite
to what you would expect based on geometry of the experiment). In this case the

density is interpreted as a ‘hole density’>.

3.6 Magnetism in the tight-binding model I: bound charge response

So far we have considered two descriptions of solids: the free electron model and the
tight binding model. The former is useful when we consider metals, while the latter is
useful for the description of semi-conductors. It is important to remember that the
tight-binding model is in principle complete as it encompasses also the description of
metals®. There is however one problem with both of these descriptions: it is not at all
clear how to explain certain other properties of solids. What about ferromagnetism?
Superconductivity? In the next two chapters we’ll discuss the origin of such emergent
properties. Before we turn our attention to emergent properties of solids however,
we will discuss magnetic properties that are captured within the tight-binding model.
Let’s go back to the magnetic susceptibility. In chapter[2.3] we've defined it as

M = v H, (3.41)

50 i.e. when oy, = oyy. This is almost always

the case for real systems.

51 Note that the resistivity bas w = 0.

52 This would require energy input!

53 One way to obtain this result is by taking
a voltage delta between two potentials,

AV =9~ 1.
By definition, the electrostatic potential is

"):'/CE"E'

Since both vectors point in the same direc-
tion, the previous expression for the volt-
age delta becomes

2 1
AV:—/ Ed5+/ Eds
Jo Jo

and therefore
AV = ED.

Filling in the previously derived electric
field yields the desired expression V.

54 Remember our discussion of quasiparti-
cles and effective mass in the first chap-
ter. If the dispersion is such that the effec-
tive mass 18 negative, the convention is to
change the sign of the charge and speak
about boles rather than electrons.

35 The main reason for using the Fellium
model at all is that it is conceptually simple
and mathematically more tractable.
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The role of Fermi-Dirac statistics

So far temperature hasn’t played any role in our description of solids; our discussion has effectively focussed on absolute
zero. Since we are mostly concerned with electrons, which are fermions, the thermal statistics is governed by the

Fermi-Dirac distribution,

fle)= 1

eﬁ(5—5F> +1 >

where 3 = 1/kzT. When we are dealing with simple metals at finite temperature, the main difference is that thermal
fluctuations allow the electrons to occupy excited states with some probability. Taking kinetic energy as an example, we
find that at finite temperature it is given by,

Ex = 2/0 deo(e) f(e)e,

rather than the regular expression for kinetic energy:

Erp
Ex = 2/ deo(e)e.
0

56 As in: parallel to the applied magnetic
field.

57 It is not exactly equal to the moment of a
free atom. It depends weakly on the local
environment or symmetry. We will ignore
these details.

58 As you might bave guessed we will use this
separation to essentially apply perturba-
tion theory.

59 Where the vector potential is given by

i %(—Bj}f( )
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A more general statement, applicable beyond linear response would be,

oM

Xin = (3.42)
oH

In the tight-binding approach the material is not magnetically ordered in the absence of
a magnetic field. Depending on the details there are now two possible responses of the
solid to an applied magnetic field. The first option is that the magnetic susceptibility is
positive, x,, > 0. This is called paramagnetism®. In the second case, the susceptibility
is negative and x,, < 0, which is referred to as diamagnetism.

To determine the response of a given solid we need to distinguish between the
response of bound and free electrons, just as in the case of the Drude-Lorentz model.
We first discuss bound electrons. This will provide a complicated response already
consisting of both a paramagnetic and diamagnetic response. The reason for separating
between bound and free responses is the following. As you are probably aware, an
isolated free atom has a specific magnetic moment associated with it. This is a result
of the combination of the nuclear moment, the total electron moment and the way
the lowest energy is obtained (e.g. through Hund’s rules). This ‘permanent’ moment
is not changed very much in solids®’. For the discussion of the ‘local’ (or bound)
charge response to an applied magnetic field we can again make use of the ‘minimally
substituted’ Hamiltonian,

2 A
H-L (pz “25. 44 ‘LAZ) + V(). (3.43)
2m c c2

In the case at hand it helps to split the Hamiltonian into two parts: H, (the original
Hamiltonian) and an interaction term Hi,.>%,
H = Hy+ Hip, (3.44)
where the two parts are defined as
Hy =2 4+ V(R)
A N 2 N
Hin=="Lp-A+15A%

2mc?

(3.45)

As before we assume we have solved the tight-binding problem defined by H,. We
now make use of the symmetric gauge® and make the appropriate substitution for the
vector potential corresponding to a magnetic field applied along the z-axis, to obtain

s 4, TR
Hine = p-A+ A (3.46)
mc 2mc?
; 2R2
=-@(x3-y3)+ eB 2ay) (3.47)
2me \ 0y “ox/) 8mc?
e’B?
=—upBlL+ — X +y%). (3.48)
c



Derivation of the Curie-Weiss relation

One derivation is by taking the eigenvalues for the energy of an atom E; = guzBJ, with J, =-J,..., J, and
_3 +S(S+1)—L(L+1)
2 2J(J+1)

The partition function in this case is Z = X; i, while the Helmholtz free energy F is given by F = k5T In Z. For small
B-fields, the partition function Z can be expanded as

_ _gF+ g _
Z_Z(l E;+ 2 BE, )

Since, in the ground state, the sum runs of 2/ + 1 levels and > E; = ¥ J, = 0 since J, =—J,..., J, the resulting expression
for the partition sum is then

Z=2)+1+ 2 (gunfBP Y J%

This last sum can once again be evaluated as >; J2 = 1/3 ;| J|?> = 1/3(2] + 1)J(J + 1). Here, 2] + 1 is the number of states
and J(J +1) is the expectation value. Putting things together, we find an expression for the Helmholtz free energy of

F=—ksTIn {(2}+ 1)(1 " %(gyBﬁB)zj(]+ 1))} .

where we have introduced the orbital angular momentum, /, in the last line. The first
term in the last line thus represents a dipole moment like interaction between the
electron and the magnetic field, whereby the electron orbital moment wants to align
itself along the field. The second term is associated with an induced moment that
opposes the field. At this point it is important to observe that the minimal substitution
applies to charged particles, while here we are in fact dealing with electrons. Apart
from a charge electrons have spin. The electron spin itself is a magnetic moment of
the same order of magnitude as the orbital moment and should thus be included as
well. We therefore add a component, H = —[i - E, to the Hamiltonian, where the spin
moment is given by, ji = —goups. Combining this with the orbital moment, we find,

e*B?
8mc?

Hine = ppB(l; + gos:) + (o +y7). (3.49)

This result holds for a single electron. For an atom we find,
2g2 2

Hine = —HBB(Z+2§)+ ¢
8mc2 ¢

(o + 7). (3.50)
1

The first term corresponds to the paramagnetic term, the second to the diamagnetic
term. In general the first term is larger, however some atoms have [ =S§=0,in which
case the diamagnetic term dominates.

It goes too far to work through the full statistical derivation of the relation be-
tween the magnetic moment and the perturbation arising from the application of the

magnetic field. Instead, we quote the following relation®, 60 Classically, the change in the total internal
energy of the system under applied field is
o 10 <0Him > ‘ G351y U= [ M- 3BdV. From this it follows

VOB \ 0B that M = 1/V(0U/0B).

We now apply this expression to the diamagnetic contribution of the interaction

Hamiltonian. This gives:

) 2

<"H""> - B2y, (3.52)
0B 4me> 3

Since we are considering the response of electrons bound to an atom under an applied

magnetic field, the result is completely independent of details of the crystal. Under

this approximation the response of a crystal is simply N times the response of a single
atom. Therefore,

_ Ne?
6Vmc?

For simple monatomic solids where the constituent atoms have filled shells (L = S =
J = 0) this is the final result. This type of magnetic response is known as Larmor
diamagnetism.

Xm = Z(r). (3.53)
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Figure 3.22: (Left): Density-of-states sepa-
rated for spin-up and spin-down states in the
absence of magnetic field. As we have dis-
cussed, the electronic dispersion (and thus
the DOS) is degenerate in spin. (Middle):
If we apply a magnetic field, the Zeeman
interaction will raise the energy for spins
opposite to the field, while lowering the en-
ergy for spins parallel to the field. (Right):
The electrons will redistribute over spin-up
and spin-down states. As a result the total
energy is lowered and a small magnetization
emerges.

61 As mentioned in the beginning of this sec-
tion the end result depends slightly on the
atom and crystal structure involved. For
crystals containing 3d elements (e.g. cop-
per) the expression for p is more accurately
given by p = 2/S(S+1).

62 The spin states in the tight-binding model
are degenerate in energy!
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The paramagnetic response is more complicated and the full derivation (see info-
box) is a bit tedious and essentially a statistical physics problem. Nevertheless, the
result is quite famous and known as the Curie-Weiss susceptibility:

nip*ig

3ksT

C
m = = —. 3-54
X T (3.54)

where n; is the density of ions contributing to the paramagnetic response and p =
gV J(J+1)°1. The key feature that distinguishes the Curie-Weiss susceptibility from
other contributions is its 1/T temperature dependence.

3.7 Magnetism in the tight-binding model II: free charge response

Let us now turn to the magnetic susceptibility arising from (nearly) free electrons. One
might expect that this follows exactly the same approach as for the Curie-Weiss law,
replacing the density of ions, n;, with the density of electrons. This turns out to be
wrong and the reason for this can be gleaned from Fig. Let’s take for simplicity the
density of states of the free electron gas in three dimensions, it depends on energy as
0(E) o V/E for both spin-up and spin-down states®2. Due to the degeneracy the spin-up
density exactly cancels the spin-down density and the associated magnetic moment
equals zero. Following the derivation of the Curie-Weiss law, we first considered a single
ion and then used statistical methods to arrive at the susceptibility. We cannot use the
same method here since electrons are fermions and therefore not free to arbitrarily
flip their spin. In fact, looking at the left panel of Fig. only a fraction of the total
number of electrons (i.e. those close to the Fermi level) are allowed to flip their spin.

So what happens in response to an applied field? First of all, similar to the Zeeman
effect the degeneracy between spin-up and spin-down states is broken (middle panel
Fig.[3.22). As a result the total energy of the system is increased if the density of spin-up
and spin-down electrons remains equal. The total energy can be lowered however:
if the electrons above E flip their spin, they can occupy a lower energy state. This
results in a larger occupation of a particular spin-orientation (right panel Fig.
and consequently a finite magnetic moment. It is not so complicated to estimate the
magnetic moment. In particular, we have for the number of up-electrons (assuming
spin-up to be parallel to the field for the moment):



Landau once said...

The derivation for the diamagnetic contribution of free electrons in the magnetic
field is absolutely terrifying. This was even more so the case when it was just
derived and presented by the physicist Lev Landau, somebody who contributed
significantly to the area of magnetism in the first part of the 20th century. The
resulting expression,

Xm,dia = — g Xm,Pauli>

was initially invoked as a triviality in one of Landau’s papers, but had no additional
information reinforcing it as the correct answer. Nobody seemed to understand
why this was the case initially, but no one dared asking Landau why this expression
had to be true. After all, one does not question information presented in this
manner, especially coming from a superior during in the ‘Russian school’, where
hierarchy was very strict.

After Landau’s death, several physicists took on the task to either confirm or deny
the result. It took them ten years to confirm it.

1 [Fr
N, =~ deo(e +uB) (3.55)

2 s
1 Ep+uB

_1 / deo(e) (3.56)
2 Jo
1 [E 1 [ErwB

== deo(e) + f/ o(EF) (3.57)
2 Jo 2 JEe

Er 1
== deo(e) + zuBQ(EF). (3.58)

Similarly, we find N_ = % OEF deo(e)- % uBo(Er). This allows us to calculate the magnetic
moment as the difference between spin-up and spin-down electrons,

3N
M = pp(N, — N_) = 10(Ep)B = “~FE g, (3.59)
2Er
From this expression we can derive the properly volume averaged susceptibility as®,
_ 3Nuj _ 3npj
2VE F 2k BTF )

(3.60)

m

In the second step we have introduced the Fermi temperature, which is related to the
Fermi energy simply as Er = kzTr. Note that the final result is indeed very similar to
the ionic contribution. We see that instead of the full electron density only a shell of
volume T/Tr contributes to the free charge paramagnetic response. The end result is
that the Curie-Weiss temperature dependence is replaced by the Fermi temperature,
TF.

The derivation of the diamagnetic contribution for free electrons is beyond the
scope of this course. We will only denote here the result as quoted in the famous
Landau & Lifschitz,

1
Xm,dia = _§Xm,Pauli7 (361)

with X, paui the paramagnetic contribution of free electrons. This last term is known
as Landau diamagnetism and holds as long as temperature is larger than the corre-
sponding cyclotron frequency scale (i.e. kgT >> hw,). There are two points to make.
First, the paramagnetic and diamagnetic term come hand in hand: the response of the
free electron gas is therefore paramagnetic. Second, in section [3.3|we found that the
density of states in a magnetic field changes drastically. In particular we showed that
the density of states oscillates in a magnetic field. This has an impact on the magnetic
susceptibility of the free electron gas as well (but not on the ionic contribution!), which
will oscillate with field. The result derived here holds in the limit of low fields.

To conclude, the total magnetic susceptibility of a non-magnetically ordered ma-
terial has several contributions. These are paramagnetic and diamagnetic depending
on whether they are parallel or opposite to the applied magnetic field. There is a
contribution from bound and free electrons. The free electron terms can be combined

83 ie. xm = 1/V(OM/OB).
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and result in a single paramagnetic contribution. The total magnetization of a material
under an applied magnetic field is thus,

2 2,2 .02
> Nfreeld n; n;e 2 =
M= reclp iPHg T 2Z* <r > B. (3.62)
kgTr 3kT 6mce
~———
Free electrons  Paramagnetism Diamagnetism

Depending on the details the magnetization can be positive or negative. In case it
is positive we will find paramagnetism, x,, > 0. In case it is negative, diamagnetism
dominates: .

Xm >0 paramagnetism

Xm <0 diamagnetism



EXERCISES I1I
MAGNETIC PHENOMENA.

In these exercises we will discuss the properties of particles and non-magnetically ordered materials
in magnetic fields.

THE DRUDE MODEL IN MAGNETIC FIELD.

In the previous chapter we have derived the Drude-Lorentz model. In this exercise we
will derive a similar result, but now in the presence of a magnetic field. This result will
form the basis for our discussion of the Hall conductivity in the next chapter. Using
the Lorentz force and extending our previously obtained result, we can derive similar
results for materials in a magnetic field. We start by considering the forces acting on
the electrons

A Write down the equation of motion for a charged particle moving through a magnetic

‘D

field in the presence of an oscillating electric field. For simplicity assume Q, = 0 (i.e.

we’ll consider the Drude model in magnetic field).

Assuming a magnetic field applied along the z-direction (i.e. B = By2), show that this
can be written as®.

(C—iwp=-2E-B (v,%-v.9) (E3.1)
m mc

Using the definition of the current ¢ and the cyclotron frequency, rewrite this as
L W cn e
(TC-iw)y = EZ‘E - we(jyX- Jji¥)- (E3.2)

Note that on the left hand side we have a three component current ]?, while on the
right hand side we have only the three component field E. The Z-component of the

current is thus,

+ w?

; »

=—7+ F E3.3

2= =i & (E3.3)
This is exactly the Drude conductivity! Derive two relations between the x— and
y-components of the current and electric field and show that these can be solved to
give,

2

=P (M iw)E, - w,E,] (E3.4)
P g oiwp v T '
. wy .

Jym et [+ (T iw)E,] . (E3.5)

T An[(T—iw) +w?]

Show that this can be cast in the form quoted in the main text:
|:JX:| - 5‘ (r o lw) _wc :| |:EX:|
. - H .
Jy
w2

W, (I'-iw)| |E,
oy=—-——L (E3.7)
4n[(I - iw)? + w?}

(E3.6)

with,

QUANTUM OSCILLATIONS

This exercise is adapted from the book by E. Economou (see literature list in Chapter

D

The density of states displayed in Fig. suggests that there would be a peak at the
Fermi level in the density of states if,

Er = hw, (n + %) (E3.8)

Show that this implies that there would be a peak in the density of states whenever,
1 = 2me (n + 1) (E3.9)
B chAr 2

where Ay = k2 is the maximal cross-section of the Fermi sphere. This implies that
any quantity related to the density of states (resistivity, susceptibility, specific heat) will
oscillate with a period A(1/B) = 2we/chAf

64 Remember:

65

u(t) = / dwv(w)e™!

E@) = / dwE(w)e ™",

. . 2 >
i.e. usingj = -nev.
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3 THE PAULI SUSCEPTIBILLITY

This exercise is adapted from the book by C. Kittel (see literature list in Chapter 1) The
Pauli susceptibility (at absolute zero) can be derived by another method. Let

N* = %N(l +0), N = %N(l ~0) (E3.10)

be the number of spin-up and spin-down electrons.

66 Hint: remember that the kinetic energy of <4 Show that in a magnetic field B, the total energy of a spin up band is given by,
a band of free electrons is given by,

1
+ _ 53 _ 2
Ey = %NEF E* = Ey(1+0) 2N(l +d)uB (E3.11)

Derive a similar expression for E-.

‘B Find the groundstate by minimizing the total energy and solve for d (in the limit
d << 1). Show that,

_ INuB (E3.12)
20E,
(C Show that the magnetization, defined as,
M=u(N"-N") (E3.13)

agrees with Eq.
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THE HUBBARD MODEL

or the emergence of magnetism from interacting electrons



7 And to be bonest, we still don’t bave a
good theory to understand at which tem-
perature something like iron becomes mag-
netic.

8 Meaning that it costs the same energy to
occupy a given eigenstate with a spin-up
or spin-down electron.

9 g = 9.27400968(20) - 1024 J/T.

70 As long as temperature remains larger
than 1040 K.
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4.1 Introduction

IN the previous chapter we have dealt with the movement of electrons in ‘simple’
solids under applied magnetic fields. With simple I mean that the electrons are
moving independently from each other through an effective lattice potential. One of
the key equations that we have used,

M = xH, (4.1)

tells us that in the absence of an applied magnetic field the magnetization in a solid is
zero. This is a bit problematic if you realize that such a thing as iron exists, which of
course is magnetic all by itself. In fact, I tried to be meticulous in stressing a couple
of times that we were considering non-magnetically ordered states. Understanding
the origin of spontaneous magnetism in solids turns out to have its surprises and it
has taken quite a bit of time before people figured out the theoretical framework®’.
Lets look back to the first chapter. We started with the Schrodinger equation for a
solid and concluded that it was too complicated. After making what appeared to be
sensible approximations we obtained a differential equation describing the motion
of a particle in some ‘mean-field’ potential. The solution to this differential equation
turned out to be a linear superposition of essentially atomic orbitals with a quantized
energy spectrum. These energy states are spin degenerate®® and therefore the ground
state of the system will never be magnetic. To make this absolutely clear: imagine
that you have a lattice of hydrogen atoms (i.e. one electron per unit cell, only the
1s-orbitals will be occupied). As we have shown in the first chapter these orbitals will
form a single energy band of momentum states. Now we start adding electrons to the
momentum eigenstates in such a way that the energy is minimal. This means that the
first two electrons will occupy the lowest in energy momentum state (i.e. k=0); one of
the electrons with spin-up, one with spin-down. The net magnetization of the solid
after the first two electrons is zero. After we have added the remaining 10> electrons,
the magnetization will be exactly zero (for a solid with an even number of atoms) or
the magnetization will be exactly one Bohr magneton® (for an odd number of atoms),
which is a pretty small number on the scale of things (it is in fact about 10%! times too
small).

To conclude, despite all the things that can be calculated within the tight-binding
approach, it does not contain spontaneous magnetism. This chapter explains how you
can get spontaneous magnetism.

4.2 Ferromagnetism & ground states

Let us stay with a concrete example for a moment. At temperatures well above 1040
K, iron is a metal that is well described with the free electron gas. In the absence
of a magnetic field its magnetization would be zero. When we apply a magnetic
field it will display a paramagnetic response with a Curie-Weiss type of behavior”.
It becomes more interesting when we apply a magnetic field and then lower the
temperature below 1040 K. At first nothing seems to change: it is still a metal and it
still has a magnetization. The interesting bit is that when we now slowly decrease the
magnetic field to zero, a finite magnetization will remain. A new state has emerged:
the ferromagnet! It turns out that iron undergoes a phase transition from a metallic
paramagnet to a metallic (or itinerant) ferromagnet. The transition temperature is
known as the Curie temperature. If we further lower the temperature all the way
to absolute zero, iron will remain a ferromagnet. This implies that the real ground
state of iron is in fact ferromagnetic and this goes beyond the standard (tight-binding)
model we have constructed. The only way we can obtain a different groundstate is by
taking a step back and look at the original Hamiltonian,

hz
H=-—— Y VZ+Upg(ra) + Us(ri, R 4.2
e E{ ; (rik) + Uei(ri, Rp) (4.2)

Remember that the first term is the kinetic energy of the electrons, the second term
the electron-electron interaction (Coulomb repulsion) and the last term is the electron-
lattice interaction. The transition temperature of iron is around 1000 K, or equivalently
about 100 meV. The energy scale associated with the electron-phonon interaction is too
small (on the order of 20 meV). The energy associated with the Coulomb interaction is
much larger (typically a few eV), but it is also screened due to the presence of all the
other electrons (see Chapter2.8). It is therefore the most likely candidate to explain
ferromagnetism. To proceed we will have to make some changes to the approximations
we made. As pointed out in Chapter 1, it is not possible to take the full Coulomb
interaction into account: the problem is simply to hard to solve, even numerically. We



will therefore focus on the simplest possible approximation, which is to add a repulsive
term that acts between two electrons if they are on the same atom. This repulsion
together with the fact that electrons are fermions and therefore obey Fermi-Dirac
statistics turns out to be enough to understand magnetic materials. The resulting
model is known as the Hubbard model. Before discussing this model, lets first look at
the simplest possible realization of this model to get some intuition of the role played
by statistics and interactions. This is a toy model for the hydrogen molecule.

4.3 The hydrogen molecule

In the first chapter we have already looked at the model for two interacting hydrogen
atoms. Each hydrogen atom has an individual Hamiltonian H; corresponding to atom
1=1,2,

Hi=-—V?+V(r). 4.3)

1

To let the hydrogen atoms interact, we added an interaction, ¢, that coupled the two
atoms. We then solved the Schrodinger equation by solving the matrix equation,

[—Et _ﬂ m =k m (4.4)

Previously, we labeled the original states |1) and |2), but here it will be more [+>
convenient to label the states |A) and |B) and to use numbers to count the electrons.
So, the eigenvalues corresponding to[4.4]are, Splitting: ™.,
1> \\ 2t //' [2>
E.=¢xt (4.5)

and the corresponding eigenvectors can be denoted as

1 1
V2 V2

where |-) en |+) are called respectively the bonding and anti-bonding states. The total

energy of the molecule is of course lower than the energy of the individual atoms™, 7! This is the reason why natural hydrogen

since the total energy of the bonding state |-) is lower than the energy of the individual =~ comes "}}bé’ﬂ)r"'l of Hy molecules rather

|A) and |B) states. However, in this consideration we have ignored the electrons than in H atoms!

themselves. The question remains what happens when we add electrons to the orbitals.

Now, each hydrogen atom comes with one electron and we can add these to the |+)
states, denoting them with numbers. The lowest energy will be obtained if we add

Figure 4.23: Energy ram of the solutions

|-) (|A> + |B>) and |+) (‘A) _ \B)), (4.6) to matrix equation 4.4]

both electrons to the |-) state’?. The total wavefunction will then be given by, 72 This state is fully occupied after this. Note
that one elegtron should have spin-up and
lv) =|1,-)[2,-) = %(H’A) +[1,B))(|2, A) +[2, B)). (4.7) the other spin-down.

This wavefunction implies that the electrons will delocalize between the two nuclei:
there is an equal chance of finding electron 2’ on atom A (indicated by state |2, A)) as
there is of finding it on atom B (since state |2, B) has an equal coefficient in the total
wavefunction). If we expand the product we can regroup the orbitals as follows,

= (LA A+ [1,B)2,4) +[1,A)2,B) +[1,5)[2,)) 4.8)

= 2 (191,2) +[¥1(1,2)). 9)

The first term is called the ionic wave function, ¥;, while the second is the Heitler-
London wave function Vy;. They are defined as,

[¥,(1,2)) = (|1,A)|2,A) +|1,B)[2, B)) (4.10)

From this we see that the Heitler-London wave function describes the situation where

two electrons have the highest probability of being on different atoms, while the ionic

wave function describes the situation where the two electrons are both found at the

same atom. Each of the four possibilities occurs with equal likelihood” and this 73 €ach of the states appearing in 4.8 bas the
cannot be right. We would expect that the situation would be different if we include same coefficient, so the probability for each
the Coulomb repulsion between the two electrons. This repulsion should somehow ~ State is the same.

lower the energy of the states where the two electrons spend most of their time on

different atoms, or raise the energy of the states where they remain on the same atom.

At the same time, we have also left spin out of the problem and this is expected to
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74 An obvious extension of this model would
involve a spin dependent interaction.

all the expectation values defined
by Eq. are satisfied by
the Hamiltonian appearing in Eq.

E12

75 Note that the matrix in &q. is quite
sparse. It is actually not so difficult to solve
for the Eigenvalues if you use the rule that
you need to find the solutions by setting
det{H] = 0.

76 Note that this is true for any finite t. As
soon as there 18 a finite overlap between
the orbitals of the individual atoms, it will
be energetically more favorable to form a
molecule!
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play an important role as well. Most importantly, the ionic wavefunction cannot be
occupied if the two electrons are in the same spin state. Or similarly, the fact that
electrons are fermions is inconsistent with the above definition of the Heitler-London
wavefunction. We therefore reevaluate the problem from the very beginning.

We will start by constructing the Hilbert space for this problem. To keep things
insightful we will only consider the 1s-orbitals, which means that we will not have to
worry about angular momentum states in our problem. We would like to take the role
played by spin into account. However, we will explicitly only consider the H, molecule
and so there really are just 6 states in the entire Hilbert space:

115105 o d)s o 405 11540, 14, 0), 10, ) (4.12)

Next we need to construct the Hamiltonian. We will do this by considering the
expectation values of different states. First of all, there are states that are equivalent to
the states of the separated Hydrogen atoms.

(MVIHN ) =26 (4.13)

and its counterpart with the spins reversed. In other words, the expectation value that
a state with exactly one electron occupying each atom (|4, |)) remains the same state
((M {]) after acting on it with the Hamiltonian is 2¢. Similar to the previous problem
we need an interaction that couples the two atoms. We use the same hopping integral,
quantified by a single parameter t. This means

Note the minus sign: the electron is now able to delocalize from its original atom and
this reduces the total kinetic energy. So far we have not changed anything (apart from
considering spin more explicitly). Now comes the crucial part: counterbalancing the
gain in energy due to the delocalization exemplified by the previous expression, it will
cost an energy U for two electrons to occupy the same atom. This can be expressed as,

<0>T‘1’|H|0:T¢> =2e+U. (415)

To see this, imagine two hydrogen atoms flying through the universe on a collision
course. The energy associated with each electron is ¢, hence for the two atoms the total
energy will be 2¢. At the moment of collision one electron is captured by an atom and
a proton flies of, leaving behind a proton with two electrons. The ‘orbital’ energy is
still energy 2¢, but now the two electrons need to spend a lot of time in each other
vicinity at a cost of the Coulomb potential U. The total energy of this state is thus
2¢ +U. Although it is possible to add further interaction, it turns out that this is the
‘bare bones’ model that we need. We therefore set all remaining expectation values
between states equal to zero’.

The expectation values for the Hamiltonian together with a complete set of states
spanning the Hilbert space is sufficient to now write down the problem. The solution
will in general be expressed in terms of the basis states. We therefore expect the solution
to be of the form,

[¥) = c1ld, M) + 02| 4) +c3h 1) +eads b)) +¢5|N, 0) +¢6[0,MN). (4.16)

It now becomes important to specify a certain order for the basis. If we use the order
specified by Eq. we can write down the Schrodinger equation in the following
form,

2 0 0 O =2t =2t c1 1

0 2¢ 0 O =2t -2t c c

0 0 2 0 0 0 3| 3

0 0 0 2 0 0 c | E 4 (4.17)
=2t =2t 0 0 2e+U 0 Cs Cs
2t 2t 0 0 0 2e+U Cs Cs

From here on it is a trivial task to find the solutions: we only need to diagonalize this
6 x 6 matrix. This is a tedious task and I will not bother you with the calculation”.
Instead figure summarizes the result. Of course, we find 6 eigenenergies in total.
We can label these energies simply by looking at their values. There are 3 degenerate
eigenenergies with a value 2e. Since this is exactly the same energy as the total energy
of two non-interacting H atoms, we will call these solutions non-bonding. Then there
are two states that depend on both t and U. The one with lowest energy is also the
groundstate and it has a lower energy than the individual atoms”. This state is called,
for obvious reasons, the bonding state while the highest energy state is known as the



anti-bonding 25 + % + %\/ U2 + 16t2

2¢e + U

non-bonding 2e

u 1
bonding 2e + — — —1 /U2 + 162

2 2

anti-bonding state. The 6th intermediate energy state is less relevant to our discussion
and we will further ignore it.

Now that we have the eigenenergies, we can also calculate the corresponding
eigenfunctions. This is yet another tedious exercise that leads to the following result:

Anti-bonding state S [(I% A+ ) + %(\N, 0) +(0,MN)) (4.18)

2

2(1 LA

UZ

1
— (I, 0) =0, 419
ﬂ(m ) =10,N)) (4.19)
. 1

“Triplet’ state |1, 1), [4,4), ﬁ(u’ A +IM)) (4.20)

. 2
‘Singlet’ state [(N, A=) + Et(\N, 0) +10,14)) (4.21)

1
2
2(1+4i)
\/ U2

The singlet state has the lowest energy in all of this and should thus be considered
the groundstate. The term ‘singlet’ here refers to the spin part of the wave function.
We can get a bit more insight if we consider for the moment U >> t, in which case the
wavefunction simplifies to,
1

V2
This is exactly the Heiter-London wavefunction if we split the wavefunction into the
spin and orbital components,

1) =1 0] (4.22)

W) = %(u, 1 -Ih) )
= J30AI-052) a1 - W 1) (424)

we see that the orbital part is exactly Eq. while the spin state ensures that the
total wavefunction is anti-symmetric as required for fermionic wavefunctions. From
the last line it is now also clear why this state is called the singlet: the spin part of the
wavefunction corresponds to the S = 0, m; = 0 state.

Independent of U and ¢ there are three solutions with energy 2¢ that are called
triplet states. Note that for very large U (or very small ¢) the singlet and triplet states
are almost degenerate in energy. This is nothing else than saying that a molecule
will not form if the repulsion between the electrons is larger than the gain in kinetic
energy. It is possible, depending on the atomic number of the atoms involved, that
the effective, repulsive interaction is sufficiently large that any additional interaction
will reduce the energy of the triplet relative to the energy of the singlet. Which of the
two states (singlet or triplet) has the lowest energy can be quantified by what is known
as the exchange energy:

27 = (W[HI,) - (W[ H|¥,). (4.25)

The exchange energy is a useful quantity in the sense that it allows us to determine the
magnetic structure of the molecule. If 7 > 0, the triplet state (with a total spin, S = 1)
will have a lower total energy and thus be the groundstate, while the singlet wins if
F <077 (with a total spin, S = 0).

Figure 4.24: Eigenenergies of the H,
molecule. We find a bonding solution, 3
degenerate non-bonding solutions and an
anti-bonding solution.

77 In nature it turns out that § < 0 for almost
any binary molecule. In fact, O, is the only
example I know where the triplet state bas
a lower energy.
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78 In fact, it is more appropriate to say that
we have taken_fermionic statistics into ac-
count.

7 From bere on we use the symbol x for the
magnetic susceptibility without subscripts.

80 We can therefore have a total spin per lat-
tice site of S = 0,1/2,1,3/2,2,....

81 It is easy to ‘see’ from the figure that there
18 order in this state. It took quite a long
time to prove that it was so.

Figure 4.25: The two magnetically ordered
states that we will consider in this course.
Ferromagnets are characterized by equal
magnetization on all lattice sites, while anti-
ferromagnetic order is characterized by two
sub-lattices (A and B) where the magnetiza-
tion on a given has the opposite sign com-
pared to the other sub-lattice.
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To recapitulate: we added the Coulomb interaction and spin”® to the problem and
ended up with the insight that the groundstate wavefunctions (although nominally
the same from the orbital point of view) can become spin polarized (i.e. have a finite
magnetic moment). I hope it is also clear that this very simplified problem (2 electrons,
1 orbital per lattice site and a total of 2 lattice sites) already provides quite a rich detail.
We will now see how the same principle, at work in condensed matter systems with
102 electrons, results in several differently ordered magnetic states.

44 Magnetically ordered states

In this chapter we will consider two distinct magnetically ordered states: the ferromag-
net and the anti-ferromagnet. Conceptually, these states are very similar to the singlet
and triplet states considered above. But what do we mean by magnetic order? In the
previous chapter we have considered the response of a solid to a magnetic field. We
have seen that the magnetization of the solid is proportional to the magnetic field”

M =B (4.26)

where the susceptibility x was positive (paramagnetism) or negative (diamagnetism).
A magnetically ordered state is a state in which the average magnetic moment per
unit cell is finite in the absence of a magnetic field. This does not necessarily mean
that the total magnetization, M=#0. Thisis exemplified in figure where the
ferromagnetic groundstate is shown on the left. In this case, the magnetization on
each site i is on average (m;) = n/2, where n counts the total number of electrons per
lattice site®. Since the magnetization is the same on each lattice site this particular
configuration will have a finite total magnetization,

Mey = Z(mi) #0 (4.27)

In real ferromagnets one typically finds domains where the magnetization takes on a
finite value, but where this value can vary from domain to domain. The right-hand
side of figure[4.25]shows the second case we will consider: the anti-ferromagnet. As you
can guess from the configuration shown, the total magnetization M = 0. Nevertheless,
the state can be characterized as magnetically ordered®'. The way to do this is to divide
the lattice into two sub-lattices. As you can see I gave different colors to the lattice sites.
The collection of dark red sites make up one lattice, the collection of light red sites the
other. The lattice of the anti-ferromagnet is called bi-partite. We can now define the
magnetic order parameter as follows:

MAFM = Z(m,) - Z(m) 20 (428)

i€cA i€B
Let me reiterate: the expressions for the magnetization defined above do not depend on
any applied magnetic field. Both Mgy and Mgy are called ‘order parameter’ because

ferromagnet anti-ferromagnet
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their value can be used as a measure of the presence of long range order. In other
words, if the order parameter is non-zero the state is said to be ordered.

In the next section we will explore how magnetically ordered states come about.
To keep things simple we will work from one single model: the Hubbard model. This
has the advantage that there is only one model to understand. The disadvantage is
that nobody knows how to solve this model, except in some limits and mostly only
numerically. In the next section I will sketch a qualitative picture to explain the
rationale behind the Hubbard model and its solutions. Then in the next section I will
sketch a more quantitative picture based on a mean-field approach.

4.5 The Hubbard model I: a qualitative picture

Given all the good things coming out of the tight-binding theory it cannot be all that
bad as a starting point. So, what I would like to do in this section is to start by using the
intuition we have gained about tight-binding theory and do a ‘gedanken experiment’
to get a feeling for how electron-electron interactions might change the picture. As
with the original model of the H, molecule from the first chapter, we only consider
the crystal structure and the orbitals when we formulate the tight-binding problem.
This is most evident in the ‘central equation™ the sums run over all lattice vectors and
orbitals. The electrons are only put in as an afterthought. In our gedanken experiment
we will start with an empty lattice of orbitals and fill it up with electrons, but we will
assume that these electrons interact in the same way as in the H,-molecule discussed
in the previous section.

So we start with a situation as shown in Fig. We have an empty lattice with
sites labeled with an index i and where we have added an electron to a particular site.
This electron can move about freely and the probability for hopping from site to site is
indicated as y. The Hamiltonian for this problem can be written as,

H=e Y [[)({[+5 D [1){7 +d]. (4.29)
H )

where the sum over J indicates that we should consider tunneling probabilities to
neighboring lattice sites. We discussed a similar tight-binding problem in Chapter 1,
which we can easily generalize to the two dimensional situation sketched here. Since
we only have a single electron in the problem, we still don’t have to worry about
inter-electron interactions and the dispersion relation is simply given by,

E = Eo +2V>(cos(k.a) + cos(kya)). (4.30)

As in the previous section I would now like to add electron-electron interactions to see
how the solution changes. However, adding a long-range interaction like the Coulomb
potential makes the problem mathematically intractable on a lattice®?. Fortunately,
having many electrons will partly solve this problem. As pointed out in section2.8|the
bare Coulomb potential in a solid is screened by the presence of the other electrons.
This means that the potential falls off much faster than the usual 1/r. With this idea in
mind John Hubbard proposed a ‘simple’ approximation that allowed him to partially
solve the problem of an infinity of interacting particles. His proposal was to add an
interaction to the Hamiltonian of the form,

_Ju If e; and e, are in the same orbital @.31)
" )0 Ife; and e, are in different orbitals )

int
Note that for two electrons to occupy the same orbital requires them to have opposite
spin. This restriction will immediately enforce the Pauli principle (i.e. no two fermions
can occupy the same state). Although this interaction seems a tremendous simplifica-
tion already, it is still a very difficult problem that can only be solved (numerically) in
a few particular instances. To understand how magnetism comes about we will focus
on the simplest incarnation of the Hubbard model, namely the single orbital case on a
2D lattice®®. We can express the Hubbard interaction in terms of operators as follows:

Hiye =U ) fiphy,. (4.32)
My

The operators 7;, are known as density operators. They can take on two values, e.g. i,
=0,1. It is an easy exercise to verify that this indeed corresponds to the Hamiltonian
proposed by Hubbard. H;,; measures the total number of doubly occupied sites and
the energy cost associated with it. The full Hubbard model hamiltonian is thus,

H=eY ()i +5 D [[) ([ +d]+U Y iy (4.33)
; i g

electron
Y
. . [ ] . . . . .
i . . Ll . . . . .

Figure 4.26: A square lattice with all empty
sites. A single electron is shown that can
move about in this lattice. The probability
for moving is determined by 7.

82 There is an interesting link bere to quan-
tum information science. To perform large
scale quantum computations one would
like to work with highly entangled states
(states where many particles are simulta-
neously interacting with each other). The
wavefunction of a solid 18 exactly such a
state because of the long range interactions.
It i3 not possible (yet) to prepare solids for
quantum computing. One of the interest-
ing problems that could be tackled with a
quantum computer 18 the simulation of the
N-particle wavefunction that we are right
now trying to approximate.

83 The 1D case would be ‘simpler] but al-

ready requires a level of mathematics that
I do not want to touch upon. The 2D case
discussed bere applies qualitatively to the
bigh temperature superconductors, which
is why I chose this version.
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Figure 4.27: Three different filling levels of
the Hubbard model. Left: Approximately
1/8th filling where it is still relatively easy
for electrons to move around without occu-
pying the same site. Middle: Close to half
filling, only a few electrons can still move.
Right: Half filling, where it is now impossi-
ble to move an electron without flipping a
spin.

84 There are some subtleties here that I will
not be able to explain during this course.
If you work through the real calculations,
you will find that the solutions (wavefunc-
tions) are linear superpositions of config-
urations. If U is finite, the coefficient for
a configuration with doubly occupied sites
will be smaller than one without doubly
occupied sites.

85 Note that there is exactly one configura-
tion at halffilling without any doubly oc-
cupied sites. The configuration shown is
thus unique.
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How does adding this term change the solution? One important difference with
previous exercises is that we now explicitly need to take spin into account (as the
interaction is dependent on spin). You can qualitatively see how the solution changes
as follows: start by imagining an empty lattice and add one electron to it. The situation
is exactly that of Fig. [4.26 and the solution will be the tight binding solution. Now
imagine adding an additional electron. In a large (infinite) 2 dimensional lattice this
will hardly make a difference. There are a few configurations (N2 to be precise) that
will each add an energy U to the groundstate energy. I can prevent this by putting both
electrons on the lattice with spin pointing up. To flip the spin of an electron will cost
energy (and requires an additional term in the Hamiltonian or finite temperature).
Therefore it seems that this is the lowest energy configuration®. Lets keep adding
electrons. from here on I will use the word filling to denote the number of electrons
in our hypothetical crystal. Since we have assumed one orbital per lattice site, there
will only be a single tight binding band. This band, as usual, will have 2N available
states associated with it. Therefore having exactly one electron per lattice site is called
halffilling, which corresponds to a density, n=1.  Figure shows a series of
snapshots with varying number of electrons. As the filling increases the number of
configurations with doubly occupied sites grows quickly. This results in a reduced
mobility for the electrons. However, if we look to the left panel of Fig. there is still
plenty of space for the electrons to move and due to them all having parallel spin they
can never occupy the same site. The real groundstate of the Hubbard model at low
filling with large enough interaction U turns out to indeed be a linear superposition
of all realizations of the configuration shown on the left. Since all spins are pointing
in the same direction...this is a ferromagnetic groundstate! This is the key result
of this section: starting from a tight-binding picture we obtain a ferromagnet if we
(non-perturbatively) include a repulsive interaction and the Pauli exclusion principle.

There is more. Let’s add even more electrons. As we approach half filling (middle
and right snapshots) the phase space for electrons to move becomes smaller and smaller
until exactly at halffilling the electrons can no longer move at all. The only way to
move an electron to a different site is to flip its spin (which costs energy) and then
doubly occupy a site (which costs even more energy). It seems to follow that the image
shown on the right is an exact graphical representation of the groundstate at half
filling®. Not only is this state a ferromagnet, it is also an insulator.

It turns out that there is in fact a little caveat to our gedanken experiment: calcu-
lations will show that our reasoning is correct at low filling. However, at halffilling
the argument is in fact wrong. I have argued so far that by keeping spins parallel,
the potential energy associated with the Coulomb repulsion, U is minimized. This is
correct, however to find the groundstate we should also consider kinetic energy. At
half filling the electrons are localized on lattice sites. This means, according to the
uncertainty principle, that the kinetic energy term o p? is in fact very large. It turns
out that the anti-ferromagnetic groundstate (shown on the right in Fig. has a
lower energy. In the antiferromagnetic state there will be ’virtual’ fluctuations where
an electron moves to a neighboring site and back again. These fluctuations reduce the
kinetic energy as the electrons are allowed to somewhat delocalize. This groundstate
is known as the Mott-Hubbard insulator. To summarize: if we have exactly one elec-
tron per lattice site in a model with on-site repulsive interactions, the Pauli exclusion
principle enforces the groundstate to be an anti-ferromagnetic insulator. This state
is in fact much more interesting than the ‘standard’ tight binding state. It is a highly
correlated or entangled state. In the tight binding picture all that mattered was the
fact that there were bands in energy in which the electrons resided. The quasiparticles
in this system were non-interacting particles and that was it. In the anti-ferromagnetic
groundstate, moving a single electron immediately influences the motion of all its
neighbors. There will be a doubly occupied site and, in the 2D square lattice case,



three sites that now feel an empty neighboring site. This will however impact also
on the next nearest neighbors as they cannot fluctuate to the doubly occupied site
anymore. This strongly correlated electron state has different quasiparticles as well.
Not only are there charged excitations (i.e. quasi-electrons similar to the tight binding
quasi-electrons) there are now a completely new set of quasi-particle excitations known
as spin waves. Before discussing all of this in more detail we first sketch the new energy
landscape at half filling. The configurations can be indicated schematically as spin
states, where the lowest energy state is the anti-ferromagnet and is separated from the
first doubly occupied site by an energy U,

Second excited state 2U 11,0, 4,--- 0,N) (4.34)
First excited state U 10,405 45 5 4) (4.35)
Ground state 0 KV SN A (4.36)

What is not entirely clear from the preceding discussion is that a band of states will
form around the groundstate (just like a tight binding band). This is indicated in Fig.
28] by the red hatched area. Different bands are now separated by energy gaps of
the order U « 2 eV. The origin of the bandwidth of a Hubbard sector lies in the fact
that electrons are still allowed to virtually fluctuate between different sites. Remember
the reason behind the anti-ferromagnetic state being lowest in energy: the electrons
are allowed to virtually fluctuate from site to site. The energy associated with such a
process can be represented graphically as,

R S ) (4.37)
142

10,44, 44) (4.38)
122

R (4.39)

where the intermediate state has an energy U associated with it. Although such a
fluctuation would cost energy, from a perturbation theory analysis one finds that a
second order process like this, would result in a bandwidth of the order,

r
J oc‘ 7l (4.40)

where J is called the exchange interaction. It can be shown (but we will not do this)
that in the limit of large U the Hamiltonian Eq. has a different interpretation
in perturbation theory. Note that in the limit of large U, the exchange interaction
becomes a small number, thereby enabling a perturbative approach. The resulting
model (up to second order in the perturbation) can be cast in the following form:

H=cst—] ) S+ Sis (4.41)
i,d

is known as the Heisenberg model. The groundstate of this model depends on the
sign of J: if J > 0 the groundstate is a ferromagnet, while if J < 0 the groundstate is
anti-ferromagnetic. We leave the discussion of the groundstate and excited states for
the exercises.

To conclude this section we will construct a qualitative phase diagram of the
Hubbard model. We have already worked out two limits. For U = 0, we have the
tight binding model. In Chapter 3 we concluded that this described a paramagnetic
metal. At half filling and large U we have an anti-ferromagnetic insulator. To construct
qualitatively the rest of the phase diagram, we do our gedanken experiment in reverse.
We start with the perfect anti-ferromagnet (Fig. and remove one electron. As
you might imagine, this won’t change all too much. Now keep randomly removing
electrons (some with up- and some with down-spin). The result will be a randomly
distributed collection of up and down spins that are free to move about. This sounds
very much like a paramagnetic metal. On the other hand we argued above that this
should be a ferromagnetic metal. As simple as this model seems to be, there is no
real resolution to this difference. The current version of the Hubbard model looks
something like what is sketched in Fig. Starting on the left (n=0) we have a
paramagnetic metal. This is just the tight-binding result that survives even infinite U,
With increasing filling the Hubbard model remains a paramagnetic metal for small
enough U, until the singular limit of n = 1 is reached where the system turns into an
anti-ferromagnetic insulator for even infinitesimally small U. Adding an additional
electron beyond half filling (a case we haven’t yet discussed) turns out to have the same
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Figure 4.28: Schematic representation of
the density of states of the Hubbard model
at halffilling. The groundstate (no doubly
occupied sites) is separated from the first
excited state (one doubly occupied site) by
an energy U.

86 For the nearly trivial reason that a sin-
gle electron cannot doubly occupy a lattice
site.
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Figure 4.29: The approximate phase dia-
gram of the Hubbard model as function of
carrier concentration (or filling). The den-
sity is defined as nr. of electrons per lattice
sites.

87 There is a larger cost associated with
adding an electron though!

88 1 am not sure how to state the problem.
What we are about to discuss is not wrong,
it just lacks the quantitativeness of the
tight-binding model.
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effect as removing one electron®”. Close to half filling for large enough U it is well
established that the Hubbard model remains anti-ferromagnetic.

The debate about the presence of ferromagnetism is still an active field of research,
but it appears that it strongly depends on the details of parameter choices and the
lattice structure. Another actively researched question is whether the Hubbard model
can ‘spontaneously’ lead to superconductivity. This is an interesting question, because
it is widely believed that the single band, square lattice Hubbard model (or a close
cousin with superexchange interactions) is the basic model describing the cuprate
high temperature superconductors. For those of you wondering why these questions
haven’t been resolved yet: away from integer filling it requires intensive numerical
computations to find the groundstate energies.

There is one last remark about the phase diagram of the Hubbard model: it is
probably the first ‘zero-temperature’ phase diagram you have encountered. This
is actually quite different from ‘conventional’ phase transitions in which the system
moves from one phase to another phase as temperature increases (e.g. ice to water). In
these phase transitions, temperature fluctuations drive the transition. This is not the
case in zero-temperature phase transitions where it is really the quantum fluctuations
that drive the transition. The strength of the quantum fluctuations is controlled by
the parameter(s) driving the transition (density and Coulomb U in our case). There
are many neat effects related to these quantum phase transitions.

4.6 The Hubbard model II: a more quantitative picture

It is possible to establish the qualitative picture presented in the previous section more
rigorously. However, the math involved is too advanced to present here. It requires
so-called ‘second-quantization’ techniques that will be introduced in a later course.
However....
You do have some of the relevant mathematical tools to do a somewhat less sophis-
ticated approach. The description we will introduce here is not wrong, it is just not
very accurate®. Before continuing, lets summarize a few points:

» Assoon as we add Coulomb repulsion, correlations between electrons become
important.

« Due to the Pauli principle the electron spins will align (anti-)parallel.

» We end up with either paramagnetism, ferromagnetism or anti-ferromagnetism.

At this point it is good to note that there are essentially two types of ferromagnetism:
local ferromagnetism and itinerant ferromagnetism. The former arises when there
are atoms in the unit cell in a high spin state (remember Hund’s rules!). We will be
more interested in the latter however. Itinerant ferromagnets are metals like Fe, Co
and Ni. Clearly, because they are metals there is a large number of nearly free electrons
that are completely delocalized. It is therefore somewhat difficult to understand how
one should relate this to the definition of an average magnetic moment per unit cell
(fig. [4.25). In this section we will make an approximation to the Hubbard model that
will set the stage for working out the origin of ferromagnetism in the next section.
The approach is known as the mean-field approximation and it is in fact similar in
spirit to the single-particle approximation explained in the first chapter. Let’s begin by



recalling the definition of the Hubbard model.

H=eY [()({[+5 D 1) +3|+U Y i, (4.42)
7 7 i

The difference with tight-binding is as explained above in the last term. The reason it is
a complicated term is that it couples two electrons together (one with spin up and one
with spin down). Wouldn’t life be easier if these electrons were ‘decoupled’> Remember
that this was in fact how we achieved the tight binding solution in the first place. We
assumed that the electron were moving in an effective potential field resulting from
the presence of all other atoms and electrons. The mean field approximation is made
in similar spirit; it decouples products of operators. A general formulation of the mean
field approximation is as follows. We redefine an arbitrary operator as,

0 = (0) +00. (4.43)

The first term is the average expectation value of the operator, while the latter term
are the fluctuations around this expectation value. The first term is a number, while
the last term is still an operator. We can always write an operator like this, but we
lack a mathematical form for the fluctuation term. Nevertheless, the idea is that the
mean-field approximation ‘works’ if the fluctuations around the average (mean) value

(field) of the operator (O) are small. To see how this helps, we calculate the product of
two operators. We find,

00 = (0)(0) + (0)d0 + (0)dO +IOIO. (4.44)

This where the approximation is made. Since the fluctuations are small, terms that are
second order in the fluctuations (i.e. the last term) can be neglected and we are left
with, o o L

00 = (0)(0) + (0)d0 + (0)dO (4.45)
This appears not to help too much, since we are now left with a number (first term) and

then two terms containing an unknown, undefined operator. The trick is to eliminate
this operator. This can be achieved making use of Eq. [4.43] while noting that:

d0 = 0-(0) (4.46)
If we replace the fluctuation terms we obtain,
00 = (0)0+0(0) - (0)(0) (4.47)

And that is the magic of the mean-field approximation. By throwing away a term
containing the square of the fluctuations, we have decoupled a product of operators
into an expression that contains only a single operators (multiplied by its expectation
value).

We can follow the same steps for the last term of Eq. [4.42]and find,

Ay = (i )ig + 7y (i) = (Riy) (fig). (4.48)

To gain some more physical insight in this result we now introduce two new quantities:
(n) = (fiiy) + (i) (4.49)

(m) = (fiy) = (Mip) (4.50)

The first line is the average electron density per lattice site, while the second line is the
average magnetization. We can express the spin-up and spin-down densities in terms
of these average values,

. n) - (m
_mdm) gy < S m) @51)
Putting it all together we have,
P . R U
U fighiy =D ety +1i e, - Z(<n>2 - (m)?) (4.52)
i i
where I have introduced two new quantities,
U
1y = 5(<n> F(m)) (4.53)

The last step is to express the remaining density operators in terms of the basis states

|i,0)¥,
hig = |i,0) (i, 0 (4.54)

Eq. follows from a mean-
field approximation of the Hub-
bard Hamiltonian.

Eq. follows from the mean
field expression for the operators
(Eq. together with the defi-
nitions of the average density and
magnetization.

89 The density operator just counts the num-
ber of electrons per site.
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Figure 4.30: Density of states for spin-up
and spin-down electrons in the absence (left)
and presence (right) of a Coulomb repulsion
U. We want to derive a condition such that
some electrons spontaneously flip their spin,
resulting in an increase of spin-density. d in-
dicates the energy cost associated with this.
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This allows us to finally write the mean-field Hubbard Hamiltonian as,

H=S &0 +5 3 000 +3,01- %«nﬁ- (m)?) (4.55)

1,0 ,0,0°

with €, = € + ¢,. This looks exactly like our original tight-binding Hamiltonian! The
only difference is in the fact that we now have an added spin label. There is however no
term coupling the two spins (as in the original Hubbard Hamiltonian) and therefore
we can solve the problem for spin-up and spin-down electrons separately. This will
result in energy bands and all the rest of it. We can in principle again define different
limits (weak-binding vs. tight-binding) and use all the terminology we developed when
discussing single-electron problems (e.g. Fermi level, density of states etc). There is a
‘but’ the energies for spin-up and spin-down, Eq. depend on the average density
and magnetization and we do not know these values yet. We still need to solve this
problem self-consistently. Finding a self-consistent solution is typically done as follows.
One starts by assuming a value for the average density and magnetization. These values
are used to calculate the groundstate energy and corresponding wave functions. The
latter are then used to calculate new values for the average density and magnetization.
These are then used to calculate a new groundstate energy and corresponding wave
functions. This loop is repeated until the densities and energy don’t change upon
repeating the loop.

To determine the phase diagram and the boundaries between the different mag-
netically ordered phases is now a matter of calculation. You pick a value of U and
a certain filling (this is done by imposing a constraint on the total density and mag-
netization) and work through the self-consistency loop. This is a rather complicated
scheme that we will not pursue. Instead, we will use our mean-field Hamiltonian to
derive a condition for the emergence of ferromagnetism.

4.7 'The Stoner criterion

In this section we will derive a condition that explains when (and hopefully also
why) ferromagnetism appears. For what follows it will help to read the discussion on
paramagnetism in section [3.7]again. In that case we considered nearly free electrons in
a magnetic field. We found that the Zeeman interaction was responsible for creating
an energy difference between spin-up and spin-down electrons, resulting in a higher
density of states at the Fermi level for one of the two spin species. In the presence
of Coulomb repulsion something similar happens and we can use our mean-field
Hamiltonian to make this insightful.

The idea is simple: we need to find a condition such that our mean-field Hamilto-
nian,

H=H¢+H¢—%(<n)2—<m>2), (4.56)

produces a finite average magnetization. This condition can be derived by realizing
that for finite magnetization to appear, such a state must have a lower energy than
the state with zero average magnetization. The average magnetization can be
expressed in terms of the density of states as follows. When we integrate the density of
states up to the Fermi level, we obtain the total charge density. By splitting the density
of states in a spin-up and a spin-down component, we can thus measure the density
of electrons with spin-up and with spin-down. To have a finite magnetization thus
means that (m) = n; - n, should be non-zero. Referring to Fig. this can happen
only if more electrons occupy a particular spin state, which results in a slightly shifted
Fermi level for this spin state. We define the difference between the two Fermi levels
as 20 = Ery - Er,,. This means that we can express the magnetization as,

ep+d ep—0
| o= | m(e)de] (4.57)
0 0

Of course, this will never happen in the nearly free electron model. The electrons with
spin-up state in Fig. [4.30|have a higher energy than what they would have if they would
occupy spin-down states; the magnetization will always be zero. Let’s see how this
works out in the mean-field Hubbard model.

Since the density of states is approximately constant about the Fermi level, we
assume for simplicity that g,(¢) ~ g,(¢f). The two integrals can then be combined into
one since g4(er) = ¢,(er). The magnetization is thus,

(m)y=ny-n, = %

cep+d

cp+d
(m) = %/ o(e)de = é-o(ep)

de = L. 20(er)d. (4.58)
0 4

ep—d



The total magnetization, (m) = 2p(er)d, will thus be finite if a minimization of the
total energy leads to a finite d. To see when this happens requires us to calculate the
total energy, which can be done making use of the density of states as well (see also
exercise[in Ch. 1)

The total energy is defined as

13

U 2 2 L
E= —Z((n) - (m)")+2 go(e)de. (4.59)
0
We will first evaluate the integral, which can be done in the same fashion as the
previous integral®®. We split the integral in a spin-up and spin-down component and
then assume there is an imbalance between the two populations. The energy per state

is given by the energy eigenvalues, ¢, of the mean field Hamiltonian®!. This gives,

ep+d ep—0
E= / (e +¢&p)op(e)de + / (e+¢€,)o,(e)de (4.60)
0 0
EF
= / [(e+€)0s(€) + (e +€,)0,(e)] de
0
eptd 93
+/ (6+6¢)Q¢(E)d5—/ (e+¢€,)p,(e)de. (4.61)
€F ep—0
The first integral can be easily evaluated and gives,
—Fo+ %<n>z (4.62)
ep+0 e
+/ (€+€T)Q¢(E)d6—/ (e+€))o,(e)de. (4.63)
€F ep—0

where E| is the total energy of the system without interactions. To calculate the remain-
ing two integrals we again make the approximation that the density of states about
the Fermi level is constant. We find for the integral with spin-up,

ep+d ep+0
/ (e+€y)o4(e)de = o(er) / (e+¢&p)de
F F »
= o(er) [€F§+ > +5¢§} (4.64)
and similarly
EF 62
/ (e+¢€,)o,(e)de = o(er) [epé— > +€¢6} . (4.65)
)

If we now add everything together, using the definition of ¢, and ¢, and reintroducing
the constant energy term, we find that the total energy is given by,

E=Fy+ %(n)2 - %((n)z— (m)®) +o(er) [0* +d(ey - €,)] (4.66)
- Fo+ %(m>2+g(6p) (620U (m)] . (4.67)

The last step is to realize that we still need to fulfill the self-consistency condition. That
is, we can make use of our expression for the magnetization, Eq. [4.58 to eliminate d
from the total energy. This gives,

Uim)).

(m?  (m)
402(er)  20(er)

<n411>2 L(Zn B U} ’

And that is our final result. The first term in Eq. is the groundstate energy of
the nearly free electron model. In chapter 3 we have seen that this groundstate is a
paramagnetic metal. The second term is derived from the mean-field approximation
of the Hubbard interaction (i.e. a remaining Coulomb interaction between electrons).
Note that the total energy will be lowered if,

U} <0

(4.68)

E=Ey+ %(m)2+()(£p) {

which can be simplified to,

E=FEy+ (4.69)

<m>2{ 1
4 Lo(er)

(4.70)

90 We will forget’ the constant for a moment
to ease writing. We don’t neglect it though!
It will be reinserted at the end.

91 The result presented here is general, but
assume y = 0 for the moment.
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Figure 4.31: Density of states of Fe, Co and
Ni. In each case we find a large density of
states at the Fermi level. This is the driving
force behind ferromagnetism.

92 For those interested: it requires a so-called
Hubbard-Stratanovich transformation in
which you define the spin-operators as ex-
ponentials of the basis states. By applying
this transformation and solving for a set
of coefficients, you can work out a trans-
formed Hamiltonian such that it is diag-
onal. The diagonal elements then tell you
the spectrum of this Hamiltonian.

93 In the exercises you will refresh your mem-
ory of their properties.

94 This is the energy cost of flipping a single
spin. Since the interactions are identical
along the chain it doesn’t matter where you
Sflip the spin (except if the chain s finite!
Then it will cost less energy to flip a spin at
the very end.). See exercise2]for details.
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which is fulfilled if,

o(er)U > 1. (4.71)

Stoner was the first to derive this result and he realized that this provided a
criterion for ferromagnetism to emerge in a metal, hence the name ‘Stoner criterion’.
If Eq. is satisfied the system can gain some potential energy by spontaneously
rearranging some spins, resulting in a spontaneous magnetization (i.e. in the absence
of a magnetic field). So what determines whether a material is magnetic or not? It turns
out that in most metals the screened Coulomb repulsion (our Hubbard interaction)
is approximately equally large. For example Cu and Fe are neighbors in the periodic
table, both have approximately equal numbers of electrons, both are metallic etc. So
U is approximately the same in both cases (and also quite small). The reason that Fe
is magnetic and Cu not is therefore not related to the strength of the interaction U.
Figure [4.31|shows calculated spectra for the density of states of three simple metallic
ferromagnets (Fe, Co and Ni). We see in each case a large peak in the DOS right at
the Fermi level. The idea that a large density of states at the Fermi energy results in
ferromagnetism is in hindsight understandable. Imagine that there is a small, but
non-negligible potential energy cost for two electrons being close together. If the
density of states is large at the Fermi energy, it will cost very little energy for many
electrons to occupy a state with opposite spin. As a result of having on average parallel
spin (finite magnetization) these electrons can no longer come close to each other
(occupy the same quantum state) and this eventually lowers the total energy. The key
is therefore in having a large phase space at low energy cost.

4.8 The Heisenberg model

At the end of section[4.5]1 explained how the Hubbard model in the limit of strong
interactions can be mapped to the Heisenberg model. The mathematical framework
behind this is a bit more advanced and we will not derive it?2. Instead we will focus
our attention on the Heisenberg model itself. Keep in mind that this is a good model
for materials where the Coulomb repulsion is strong (which means high free carrier
density together with small dielectric function). The Hamiltonian is simple to write
down in full generality, o
H==% JiS:-S.

iJ

(4.72)

where J;; is an exchange interaction and the S are spin operators®®. The lattice can
be chosen to have D dimensions and the sum over d, which couples different lattice
sites as in the tight binding model, can run over as many neighbors as one wishes.
The Heisenberg model is again one of those models that does not have a solution in
generality. Nevertheless, several solutions are known for particular versions of the
model. Let’s consider two simple examples to focus the discussion a bit. The first model
is the Heisenberg model on a 1D chain with nearest neighbor spin interactions only.

This simplifies the Heisenberg Hamiltonian to,
Hip =] 5+ Sia. (4.73)

1
The second model we will consider is the Ising model in 1D on a chain. This model is a
simplification of Eq.[4.73|where the x, y- components of the spin operator are ignored,
H=-]) .S (4.74)
1

It is relatively straightforward to understand the solution of these two models when
J > 0. The groundstate energy (or the expectation value of H;p) will be minimized
when all spins are pointing in the same direction (since the inner-product will be
largest in that case). Since we are free to choose the spin direction for H;p, we can
have them all pointing along the z-direction. This shows you then that the groundstate
energy of both the 1D Heisenberg and Ising models are the same (E, = —/NS? to be
precise). Since the energy is minimal when all spins are pointing in the same direction,
both models have a ferromagnetic groundstate at zero temperature. It is also relatively
straightforward to determine the first excited state in this case (see exercise2). In the
Ising case, the first excited state is exactly 2JS higher in energy®*. Note that this is the
energy cost associated with changing the spin on a given site by S = 1. The excited states
of the 1D Heisenberg model are more interesting however. The difference between
the groundstate and an excited state are indicated in Fig. In the Ising model the
spins cannot tilt in the x, y-direction and therefore it is necessary to flip the spin by
one quantum on a given site. This means that it will always cost 2 /S, no matter where



groundstate

excited state

you put the spin. In the Heisenberg model on the other hand, flipping a spin on a
given site still costs the same, but we can now also choose to flip the spin ‘halfway’
towards the x-axis on one site and halfway on a neighboring site. The change in spin
is still $ = 1, but it will only be a fraction of the energy compared to the Ising model
because the two spins that are half flipped can still have their spins parallel. Taking
this idea a step further (again, see exercise[2) we can make a total spin-lip § = 1 also by
tilting the spin on all sites ever so little away from the z-axis. This will then hardly cost
any energy and one says that the spin-flip ‘delocalizes™ it is spread out over the entire
chain. It turns out that a whole energy band of excitations is possible that can be
characterized as having different frequencies (or better wavelengths). These solutions
are called spinwaves or magnons. Their dispersion (Fig. is given by,

E=-JNS*>+2JS[1-cos (ka)] (4.75)

where a is the lattice spacing. There are some interesting analogies to make with how
band electrons behave in solids. In the case of electrons (Chapter 1) we had particles in
free space that turned into quasi-particles as a result of a periodic potential. We ended
up with band electrons characterized by a momentum k. In the current case we start
with spins that, as soon as a periodic interaction is switched on (lattice + exchange
interaction), turn into spin waves. They can also be characterized by a similar quantum
number k. In fact, even the dispersion of these quasi-particles is the same (a cosine
band). There are also differences. First of all, the spin waves have S = 1 and are therefore
bosonic quasi-particles. Moreover, there is not really a particle that we call ‘spin’ that
carries a spin moment of S = 1. The spin waves are therefore more like the phonons:
they are an emergent property of the solid. Since the spin waves are bosonic, they
all condense into the k = 0 state at T=0. This has to be of course: the groundstate is
the perfect ferromagnet and so at T=0 there can be no excited spin wave. In the next
section we will see that the thermal occupation of spin waves results in fluctuations of
the ferromagnetic order parameter (the magnetization M). These fluctuations increase
with temperature until, at a critical temperature, the ferromagnetic state is completely
destroyed and we are left with a paramagnet. In the subsequent sections we will derive
the temperature dependence of the magnetization and see how the spin waves play
their role in the ferromagnetic phase transition.

4.9 Magnetization as a function of temperature

In the previous section we have seen that the excited states of the Heisenberg model
can be described by spin waves that follow Bose-Einstein statistics. This means that
with increasing temperature more and more excited states will get occupied. Thermal
fluctuations of the magnetic order translate to ‘vibrations’ of the spin moments, just
like thermal fluctuations of the crystalline order translate to vibrations of the atomic
positions. Let me stress this once more: spin waves and lattice vibrations are an
emergent property that appears in a solid as a result of periodicity; the origin of spin
waves and lattice vibrations is the same.

Figure 4.32: Top: snapshot of the ground-
state for the case J > 0. Note that all spins
are pointing up. Bottom: Snapshot (exagger-
ated) of an excited state. The spin on every
site is slightly tilted away from the z-axis in a
coherent fashion, such that the energy cost
of flipping a spin is minimized.

E(k)

Figure 4.33: Dispersion relation obtained
for the 1D Heisenberg model.
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95 Indeed, the low momentum states are com-
pletely delocalized over the entire chain
since A — o for k — 0.

96 Note that we assume here a finite chain,
while we started with the excited states of
an infinite one. In general this will work
out correctly if we take the limit of N -
o at the end of the calculation. In this
particular case, the final result will turn
out not to depend on N.

97 In what follows I will set h = 1. The final
result turns out not to depend on h, so this
is just a means to simplify the expressions
along the way.

98 Since x = w/kyT and therefore w = xkgT,
the relation between the infinitesimals dw
and dx 18 dw = kgTdx.
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In a real solid at zero temperature there will be a certain magnetization per unit
cell, corresponding to a number of times a spin-1/2 moment. These moments will all
be aligned along a certain direction. Since the total magnetization of the solid is given
by the sum over all unit cells, the total magnetization will be as large as possible at
zero temperature. If we now turn on and slowly increase temperature, more and more
spin waves will be excited according to the Bose-Einstein distribution. The number of
spin waves with momentum k that is excited at a given temperature is given by,

() = ﬁ (4.76)
where ¢ = hw and kg is Boltzmann’s constant. Since each spin wave corresponds with
an excited state that carries a certain moment, the total or average magnetization
decreases with temperature. We can calculate the low temperature magnetization as
follows.

At low temperature we can approximate the spin wave dispersion by expanding
the cosine up to second order,

hw = JSak>. 4.77)

Now, we need to estimate the magnetization per unit cell. This is of course given by
the expectation value of the local spin moment,

(mi) = —gup(S::) (4.78)

We can express this in terms of the occupation number of spin waves by realizing that
the total spin S will be reduced by the average number of excited states per unit cell,

(mi) = —gup(S- (M)

Note that the correct quantum number for a spin wave is its momentum k (and thus
not its position). We therefore do not have an easy expression for (#1;)°>. However, we
do know the occupation number of spin waves with a given momentum k for a given
temperature. Therefore, if we sum over all k-states and then divide by the number of
unit cells N, we get the average density per unit cell®,

(4.79)

. 1 .
() = = D' (). (4.80)
N4Z
This sum can be converted to an integral as follows,
Vv * 5
Z---—’ ari?. .. dk. (4.81)
T @m)? Jo

The integral is most easily performed by changing variables to energy, €. To do this we
make use of the approximate dispersion relation, Eq. [4.77} and its derivative®’,

49 _ 5 e’ and therefore dk = — %< (4.82)
dk 2JSa2k
Substituting variables thus gives,
(i) =~ 3 ()
N5
1 Vv /471L dw (ny)
N 2n)® Jo JSa? 2JSak
© 2
1V /471L dw USi(m)
N Q2n)® Jo JSa? 2jSa? V. w
-V VO da, (4.83)

4m2N Jo JSa2\/JSa?
Next we substitute the Bose-Einstein distribution and collect all factors. This gives,
v 1 [ Ve

= dw. 4.84
4m2a3N (JS)¥* Jo ewksT -1 (489

Now note that the volume V in the numerator of the pre-factor cancels with N times
the volume of the unit cell (a®). By making the substitution, x = w/kzT° we find

B e =
(i) = L(kl‘i) VX dx
4w\ s ) )y e

(4.85)



The last integral is a standard integral that evaluates to

T vx dx = %¢E (%) (4.86)

0o -1

The zeta function can be looked up in a table and so we find,

32
(A) =~ 0.0586("3—T) : (4.87)
JS
The total magnetization at low temperature is thus given by
a2 N(mi) _ NgpsS (1 _ ﬂ), (4.88)
Vv Vv S

The pre-factor is of course the magnetization at zero temperature and so we have,

3/2
M(T) = M(0) {1 _ 0'05586 (’%T) } . (4.89)

which is known as Bloch’s law. In principle this expression already tells you that at suf
ficiently high temperature the magnetization will disappear. The critical temperature
obtained from this expression is however incorrect: the approximation of the cosine
dispersion is not valid at higher temperatures. It is hard to indicate exactly when this
approximation breaks down. At intermediate temperatures there all kinds of detailed
processes that we have ignored in our treatment. We can however make a more exact
prediction of what happens near the phase transition. This will be the topic of the
next section.

4.10 The ferromagnetic phase transition in the mean-field approximation

Close to the phase transition there will be strong fluctuations of the local magnetic
moments due to thermal energy. Since at high temperature states with many different
k’s will be excited there will be fluctuations of the magnetization on all lengths scales.
It is this regime that it makes some sense to apply the mean-field approximation. After
all, viewed from a single unit cell there will be an effective magnetic field B that will be
more or less static in time, which will average out to zero right at the phase transition
itself.

We will follow the recipe of section[4.6} Our Heisenberg Hamiltonian is a product
of two operators and so we find,

H=-3 55, (4.90)
<) Y [Si- (S + S-S+ (8- (8] (4.91)

We ignore the last term as it gives only an offset to the final energy. Also note that
the average value of the spin operator on site 7 is of course equivalent to the value of
the spin operator on site j (at least for ferromagnetic interactions). We can therefore
write, ) o
H=~=2] ) S+ (S)). (4.92)
bj

It is at this point not difficult to also include a real applied magnetic field B. This adds

a term guB to the Hamiltonian. Now note that the sum over j can be interpreted as
an effective magnetic field acting on the spin at site i. In other words,

H=- Z Si [Z 2J(S;) - gyBB] ) (4.93)
i J

We can now interpret the term in brackets as a total effective field acting on the spin
at site i by recasting the Hamiltonian in the following form?,

H= 8HB Z §,‘ * Beogy. (4.94)

where,

Begr =— {2] > (3) —B} . (4.95)

the Heisenberg Hamiltonian can
be approximated in mean-field by

Eq.[97]

9 Compare this with the Hamiltonian in

paragraph 3.6.
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100 This follows exactly the derivation of the
Zeeman energy, except that in this case we
are working with an effective field that
includes neighboring spins.

1 8= (ksT) "
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We can also express the average spin moment in terms of the magnetization per
unit cell,

Ber =B +]Z (gHB)Z (4.96)

so that the Hamiltonian is a function of the magnetization. At the same time, the
magnetization is determined by the free energy (see chapter 3),
oF

(mi) =~ B (4.97)

We'll first need to calculate the free energy,

F=—ksTln (Z efsr> (4.98)

where the energy eigenvalues are the standard Zeeman energy levels,
En= gHBBeffms (499)

where m; = =S...S is the magnetic quantum number!®. If we consider small fields or
high temperature, the exponential in Eq. [4.98|can be expanded as'"',

o FEm = 1—ﬁEm+%/32E,2n—..., (4.100)
To calculate the free energy we need to sum over all 25 + 1 energy eigenvalues. Note
that since the quantum number m; runs from =S to +S all odd powers of the energy

eigenvalues sum to zero. We therefore have up to second order,

; 1+ %/325; =(2S+1)+(2S+ 1)% (BgusBesr)’ %5(5+ 1) (4.101)
where I have used the fact that $2 = §2/3. The free energy is thus,
F=—ksTIn ((25+ 1)(1+ % (BgisBesr)” S(S+ 1))
= —ksTIn(2S+1)—ksTIn (1 + % (BgisBesr)” S(S+ 1)) (4.102)
From which the magnetization follows using Eq.
1(8us B BeirS(S+1)

T R G BB PS5+ 1) (4109

We can ignore the term in the denominator proportional to B%; (since we are working
in the small field limit). Therefore,

(m) = kBT%(guBﬁ)zBeefS(S +1). (4.104)

If we now define p’ = gv/S(S + 1) we have,

(p/ﬂB)zBeff
rnl- =, 4.105

This apparently simple result is exactly the inverse temperature Curie-Weiss law that
we obtained in section 3.6} Apparently, because in the current case we have an effective
magnetic field, rather than an applied magnetic field and the effective field still depends
on the magnetization. Remember: the last step in any mean-field approximation is to
solve for the ‘mean-field’ (in this case the magnetization) self-consistently. In the case
at hand it brings us to the ferromagnetic phase transition. Let’s combine Eq. 4.9 with

Eq.

(P'us)’ 2
m;) = B+ m;)J (4.106)
)= St [P Gunp 2™
Now we note that in a ferromagnet, translational invariance requires that (m;) = (m;),
ZB 2 2
(mi) = (1) (p'us)*(m : Z] (4.107)
3ksT 3kBT(guB)



This is the general result. The question now arises if we can find a solution where
(m;) = 0. This is most easily seen by setting B = 0 in which case our expression simplifies
to,
oy _ 2(p'up)* (i)
<mi> = . < 5 Z
3kpT(gHs)

_ 255+ D))
T Z J (4.108)

We thus have to satisfy the following condition,
<ﬁ’li>( 6+ 1) ZI) (4.109)
3ksT &

There are now two options (i) (m;) = 0 in which case only the paramagnetic term
survives (i.e. no ferromagnetism) and (ii),

25(5+1) ~
SaT Z]_ 1 (4.110)

In which case it will be possible to have a finite magnetization in the absence of a
magnetic field and still satisfy the self-consistency condition. The critical temperature
where this condition is satisfied is called the Curie temperature and it is defined as,

GRS v @.111)
ks 4

This self-consistency still holds in the presence of a finite magnetic field. Looking back

to Eq. 4.107| we have, 11y

paramagnet

25(5+1) (p'us)*B B
{rm >( 3ksT Z]) 3ksT (4112

where we now recognize our expression for the Curie temperature on the lefthand-side.

hus simplify thi
We can thus simplify this to, ferromagnet

/ 2B
)5 wm A

which after rearranging finally gives us the following expression for the total magneti-

zation, Figure 4.34: Comparison of the inverse mag-

N netic susceptibility for a material with and

N(m;) npuiB without ferromagnetic transition. In the
v = 3kp(T—T, )’ (4.114) former case the susceptibility has a finite

B\L = 1C temperature intercept where ¥~ = 0 (i.e.

The susceptibility that follows from this is sketched in Fig. Also shown for ~ Where the susceptibility diverges.)
comparison is the result that we obtained in Chapter 3 for the paramagnet. Since the

susceptibility diverges for both the paramagnet and the ferromagnet, it is customary

to plot x! instead'?2. The result we obtained is valid for T = T¢. To obtain the result %2 It is not possible to measure the divergence

M=

just below T, we need to calculate the sum in Eq. exactly. This can be done in an experimental setting. By plotting
by realizing that the exponential is essentially a geometrical series. Writing out the ~ ci one can extrapolate the measured
. find data set. If it extrapolates to zero at finite
¢xpansion we nnd, temperature the material is a ferromagnet.

Z ~BEm _ Z BEHBBerms _ Z ~cm (4.115)

eFim =N e =Ye .
m m m
=4 4O, (4.116)

where we have defined ¢ = gupf3B.s. We can perform the sum by rewriting the last line

as,
z ePEm — oS [] et eCZS] , (4.117)

The terms in brackets form a geometrical series!® that can be summed, 103

el 1 g, o 1-xml
v 1- ec(25+1) e o(S+3) _ eC(5+2) i_ .
S e = oS - , (4.118) A

- 1—ec e~c/2 _ pcl2 i=0

1

where in the last expression we’ve multiplied both the numerator as well as the
denominator with e/2. We can now calculate the free energy as

__1y, (sinh[c(S+1/2)]
F= ﬁln( woh (7] (4.119)
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Figure 4.35: Phase diagram of the Heisen-
berg ferromagnet. Indicated are the low and
high temperature regime of the temperature
dependent magnetization.

Eq. 126 follows from Eq. {121

Use this to find the leading order
behavior of the magnetization.

70

M(T) = M(0) — AT?/?
- /Bloch’s law
M(0)

spin waves

M(T) x (Te = T)®

thermal \
fluctuations

Tc T

From the free energy, we can calculate a magnetization by taking the derivative,

(m;) = —gug{(5+ %) coth |:C(S+ %)} - % coth (%)} (4.120)

This is the exact result so far, but again we have the magnetization appearing both
on the left- and right-hand side. We can numerically solve for the magnetization
from this. Close to (but still below) the Curie temperature we can expand coth(x) =
x1+x/3-x3/45 + ... and solve for the magnetization. The resulting expression (for B = 0)
for the average magnetization can be written in the form,

1/2
1/(Te
mp)y=—|\—=-1] , 4.121
m) = (1) @121)
where,
5 8(S+1) T\
RN as (7) (4.122)
3VS2+S+1/2 Tc
We now define a reduced temperature as,
p==Te (4.123)
Tc
which gives,
N =1+t (4.124)
Tc
or equivalently,
Te_ 1 (4.125)
T 1+t

With some algebra it is now easy to show that the magnetization can be written as
(with B some pre-factor),

(m)*=B(t+1y - (t+1)’ (4.126)

From this we find that the leading order behavior of the magnetization for ¢ close to
zero (i.e. for T < T¢) is,

(mi) ~ BJt|"? (4.127)

It is equally possible to derive the susceptibility from Eq. along similar lines.
In this case you have to take the derivative with respect to the magnetic field before
expanding the coth functions. The result is (also for T < T¢),

x =~ Clt|™ (4.128)
The crucial result is of course that the magnetization is finite below the critical tem-

perature, indicating that we have indeed found ferromagnetism. The next section
summarizes these results.



Figure 4.36: Comparison of the spin wave
dispersion of a ferromagnet and an anti-

F M S p | n waves A F M S p | N waves ferromagnet. Note the different behavior of
the spin-waves for k - 0.
E(k) E(k)

\4

Kk 1\ k
hw = JSa’k? w X ck
spin 1 spin 0 (1)

4.11 Summary of the ferromagnetic groundstate

We can now combine the results obtained in the preceding sections into a temperature
phase diagram for the ferromagnet. In the exercises you have shown that the Heisen-
berg model allows a ferromagnetic groundstate at zero temperature for / > 0. You
also showed that the Heisenberg model had excited states that can be characterized as
bosonic quasi-particles called spin-waves. At zero temperature the spin-waves condense
into the k = 0 state and the system is fully polarized. In real materials'™ there will ™ e.g. where the Heisenberg model really
be a zero temperature magnetization M(0). If we now turn on thermal fluctuations ﬁjeuiZﬁ;ﬁff}(r)}%ﬁ%ﬂﬁfofsefé :a”l
(e.g. at finite temperature) spin waves will be excited and these will start to reduce materials are a bit more complicaté d
the magnetization. This gives rise at very low temperature to a Bloch law behavior
of the magnetization (i.e. M(T) ~ —~AT%?). As temperature increases more and more
spin waves are excited and the average magnetization per unit cell will start to strongly
fluctuate. At some temperature the fluctuations are so strong that the magnetization
averages to zero. The magnetization just below this critical temperature follows a
power law behavior and right above this critical temperature the magnetization (in
the absence of an applied magnetic field) will be zero. The susceptibility at the critical
temperature diverges right at the critical temperature. This is the ‘classical’ behavior of
a phase transition: right at the transition a response function diverges, indicating that
the system is in a meta-stable state.
We summarize this in Fig. Note that for temperatures in between the low
temperature limit and the critical temperature we have no simple expression. As a final
note to conclude our discussion of the ferromagnetic state I would like to point out
that the critical exponents'® that we obtained in mean field theory are actually not '%° The critical exponent « of a phase transi-
correct. An analysis of the Heisenberg model (using the exact ‘Bethe ansatz’ approach) tion is defined as X ~ t* where X is an
shows that the actual critical exponents are, observable or a response function and t is
the reduced temperature.

(m;) ~ B|t|"? (4.129)

and,
x ~ Clt[™? (4.130)

These exponents can indeed be confirmed by experiment. This concludes what we will
discuss in this course. There are several interesting facts/features of the ferromagnetic
state that you can read about in textbooks. An interesting example is the occurrence
of domain walls in real ferromagnets. The idea behind their appearance is simple (i.e.
it reduces the total energy), but their theoretical description and effect on observables
is surprisingly rich (featuring links to the mathematics of topology, solitons etc.).

4.12 Anti-ferromagnetism

So what about anti-ferromagnetism? Unfortunately, a more quantitative picture
of the anti-ferromagnetic state is a bit more complex. You have discovered some
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of the difficulty in the last exercise. The anti-ferromagnet is however a lot more
interesting from a theoretical physics point of view. The anti-ferromagnetic state in fact
corresponds to a highly entangled, correlated state. There is an important difference
between the ferromagnet and the anti-ferromagnet. This difference becomes visible by
plotting the spectrum of excited states (see Fig.[4.36). The leading order term of the
spin-wave dispersion in the case of an anti-ferromagnet is not quadratic, but linear!.
That doesn’t sound spectacular at first, but it makes a crucial difference. For example,
the spin waves of the ferromagnet are massive while the anti-ferromagnetic variant is
massless. The anti-ferromagnetic spin waves also carry a different spin (s=0, rather than
spin 1). The origin of these differences lies in the fact that the anti-ferromagnetic state
is a spontaneously broken symmetry state. The details of this go too far to discuss
here. For now you’ll have to take it for granted that the Hubbard Hamiltonian can be
shown to be invariant under global rotational symmetry. It is not hard to visualize that
the ferromagnet still obeys global rotational symmetry (i.e. when you rotate the total
magnetization nothing really changes). For the anti-ferromagnet on the other hand
you cannot rotate all spins in the same direction simultaneously without increasing
the total energy. Because I would like to discuss the superconducting state in some
detail as well and because this also represents a spontaneously broken symmetry state
I will leave the discussion of the anti-ferromagnet for another time.



EXERCISES IV
SPIN PROBLEMS

The content of this set of exercises has again not been discussed during class. Due to a missed
lecture hour, we are a bit behind on the planned schedule. The exercise is a bit different from
what I had in mind, but the details will be discussed in class.

SPIN OPERATORS

106

We recall the basic spin operator relations'’. The spin operators commute:

[508,] =45

o (E4.1)

[$.5,] =0

where a = x, y, z. Remember that you can cyclically permute the x, y and z labels. We

will be looking at lattices where spins are bound to a single site i. The commutation
relation between spin components on different sites i, j is:

A

|:SX,[, §y, j:| = 1'51'1‘52,,'- (E4.2)

In other words: operators on different lattice sites commute with each other. Recall
also that:

§z|5)m5> =ms|S)ms>
Y (E4.3)
S%|s,ms) =S(S+1)|S,ms).

where $2 = §2 +§§ +52. We will use the shorthand notation |s,m,) = |S.), with S.|S.) =
S.|S:). We will also need the spin-ladder operators:

Sei=8.+iS,; (E4.4)

L ) (E4.5)
[$:6:8.] = 2,8,
The spin ladder operators act on a spinstate |s,,7) in the following way:
Sils:) = alS.;i+1)
(E4.6)

Silsz) = 8IS - 1).
The coefficients can be determined (by you) as follows.

First find expressions for the products S.S and §,$+ in terms of $2 and S,. Hint: First
use equation and then use the definition of 5.

Show that (S.|S_S,|S.) = |a|? and (S.|S,S_|S.) = | B|>. Hint: Remember that the hermi-
tian conjugate (A|{1//))T = (y|AT and carefully look at equation

Combine the results of exercise 1a and 1b with the equations frornto find the
coefficients of S_ and S,:

SielS:) = V/S(S+1)=8.(S. = 1)|S.; = 1). (E4.7)
Note that this expression can be recast as

S) = V/(SFS)S+1£8)[S.;+1). (E4.8)

S i+

‘D Finally show that the product §; - § 7 can be written as:

A A A

S,’ . Sj = Sz,igz,j + %(§+,i§—,j +§,},‘§+,j>. (E49)

THE HEISENBERG SPIN MODEL: THE QUANTUM CASE

1

196 11 the following, we set h = 1.
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197 With ] > 0.

198 This is assuming periodic boundary condi-

tions, or in other words: the chain is closed
on itself.

199 At zero temperature.
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The ‘simplest’ model describing interactions between electron spins is the Heisenberg
model:

N
> JiSi- S, (E4.10)

J=1

M=

H=-

I

I
—

This turns out to be quite complicated. For periodic systems, the above expression can
be rewritten as:

H==-% JSi-S. (E4.11)

i#]

There is no general solution: it all depends on what we choose for J;; and the dimen-
sionality of the lattice. This should at this point remind you of the tight binding model:
there we had a number of orbitals per lattice site (atom) which ‘coupled’ together
through overlap integrals. As you have seen in previous exercises, the solution depends
on the number of orbitals per unit cell you include (here J;) and the dimensionality
of the lattice. In this problem we will consider a linear, one-dimensional chain of spins
with nearest neighbor couplings only where J; = d; .1 J'%7. This reduces the problem
to!%8:

Si- St (E4.12)

M=

I
—_

H=-J

An even simpler spin model (in fact the simplest) is the nearest neighbor Ising model:

52,1'52,i+1 . (E413)

M=

I
—

H=-J

For our choice J > 0 it is ‘obvious’ that the groundstate!® of the system will be
ferromagnetically ordered (all spins pointing in the same direction). We will ‘prove’
this statement for the Ising model first.

¢ A Find the energy E; of the ferromagnetically ordered state. Hint: You can get the energy

‘B

‘D

by acting with the Hamiltonian [E4.13|on this state.

IG) = [81:=5,5:=S,...,5x:=5). (E4.14)

We choose the values of S to be positive. Show that the energy of the state:

imy = Sm=1G) (E4.15)
V28
is E;y = Eg +2JS. You can also show (but you don’t have to) that SA,,,,+|G) =0. Hint: first
prove the relation

S0iSajlm) = (S= i) (S= i) [ m). (E4.16)

We started out with all spins pointing up (total S,; = S) and have now found that the
first excited state (Jm) has all spins pointing up, except at site m, where S, ,, = S- 1) has
a higher energy than that state. Hence, |G) is the groundstate. In general S = n/2 with
n an integer. For the special case of spin 1/2 systems, the S, operators are called spin
flip operators. We now turn to the Heisenberg chain, equation [E4.12

First prove the relations:

S_iS..;lm) = 280;, i)

. (E4.17)
S+,,-S_,j\m) = ZS(j‘[,m |]> + 26{7]'(5— (fm,,') |m> .
The next step is to show that equation [E4.12|is equal to:
N N o 1/+ .
H=-J Z‘ Si-Si=-J Zl {sz,,-sz,m +3 (SuiSia + s_,,-s+,1-+1)] . (E4.18)

Hint: This is trivial given exercise 1d.

We now calculate the groundstate energy E; of the Heisenberg model. This is done in
exactly the same way as problem 2a. Assume again that |G) = |S;,=5,5,,=S,...,5x,. =
S).



F We can start putting things together. Just like in the Ising case we now consider the
first excited state, Eq. (19). Show that:

Him>=Eglm>+2JSim >-JS(Im+1>+/m-1>) (E4.19)

Hint: First write down an expression for each individual term of the Hamiltonian
acting on |m > using Eq. 20, 21 and 22.

We have a small problem. If you compare the result of Exc. 2b and Exc. 2f you
see that in the former case we had:

H|m >= E,|m > (E4.20)
while now we have:
Him>=E,m>-JS(im+1>+m-1>) (E4.21)

The state |m > is no longer an eigenstate of the Hamiltonian! The problem is however
not hard to solve using the tools developed in the first part of the course. If you forget
for a moment that we are dealing with spins, Eq. has the form of a nearest
neighbor tight binding model. The energy (E,,) of the ’orbital’ at site m is modified by
the ’overlap’ with orbitals on sites m + 1 where the overlap integral is replaced by JS. To
find the correct excited states of the Heisenberg chain we should take the periodicity
of the lattice into account: Bloch’s theorem.

G Use Bloch’s theorem to find the eigenenergies of the excited states of the Heisenberg
chain. Hint: Bloch’s theorem states that

k) = % 3 eitlin|m) (E4.22)

Use this to compute (k|H|k).

H Bonus: can you explain where the difference between the Ising chain and the Heisen-
berg chain comes from and what it means physically? Hint: it might make it easier to
understand the difference by plotting the band structure for both cases in one graph.

THE HEISENBERG SPIN MODEL: CLASSICAL CASE.

3

10 At one point I got stuck with the index i,

Last time we looked at the simplest spin model: the Heisenberg model. If we change
the index from i to p'°, the Hamiltonian reads

N which lead to expressions of /1.
H=-] S, Spn (E4.23)
p=1
or equivalently
N 1/+ - .
H=-]Y {sz,psz,,ﬂ1 +5 (sw,s_,,ﬁ1 + 5_,,,s+,p+1)} . (E4.24)
p=1

We found the groundstate energy for J > 0 and the excitation spectrum. Today we
investigate the case where J < 0.

¢ A For J <0, we expect the anti-ferromagnetic state to be the groundstate. This state can
be written as

‘G> = |T7 ‘1/) Ta- .. a‘l’> = |Sl,z = 5,52,2 = _57- .- 7SN,Z = _5> (E425)

or
IG) =1S.=8,p € A)|S.==S,p € B). (E4.26)

Show that this state is not an eigenstate of the Heisenberg Hamiltonian.

This is in fact a problem. What happens here is that the groundstate ‘spontaneously’
breaks the spin-rotational symmetry of the original Hamiltonian. It is also quite
spectacular: we have a model with one tuning knob, J, which is easy to solve on one
hand (J > 0) and completely unsolvable on the other hand (J < 0). In one dimension,
there actually is a solution, known as the Bethe ansatz solution, but that is beyond the
scope of this course. For higher dimensions no solution is known. There must be one:
anti-ferromagnets are frequently observed in nature. The fact that this state breaks
a continuous symmetry has an interesting consequence for the excitation spectrum.
This is the subject of this exercise.
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‘D

Approximate solutions are possible, but they are hard to obtain (and definitely not
without the use of second quantized operators). Interestingly, it is possible to calculate
the spin dispersions using a classical model for the spin system. As discussed in the
lecture, magnetism is a purely quantum phenomenon so you might wonder why this
would work. To convince you that it could work, we will first calculate the spin waves
of the ferromagnet again. This is a warming up for the anti-ferromagnetic case, which
is exactly twice as complicated, but follows the same path.

We start with the Hamiltonian from equation [E4.23| with J > 0 (the ferromagnet).
We will treat the operators as classical vectors S of length S. In this case, S, - Sy = S2.
Show that then, you can write the term with index p:

>

iy Ber, (E4.27)

where uj, = —guS,. Hint: Since we are dealing with classical objects, you don’t have to
worry about commutation relations.

In classical mechanics, Newton’s equations state that the angular momentum will
change if a torque acts on it:

o

ot
For a magnetic moment, the torque is equal to T = ﬁxé Use this to derive the
equations of motion for the individual spin components (S, S and §?). Hint: The
angular momentum associated with a classical spin is hS. Consider the motion of the
spin at site p in the effective B-field only.

=T. (E4.28)

If everything went right, you should now have equations that link the rate of change
of S, p to products of the type 555, ;. The resulting set is nonlinear and not easy to solve.
We make the following approximation: we assume that the amplitude of the excitation
is small, compared to the total spin. Linearize the equations of motion by setting S}, = S

and neglecting terms that are the product of $* and §”. You should now have:

08y, JS '
0: = F (2’5¥ - Sﬁ—l - Siﬂ-l)
0S) IS ex ox N
o =5 S5 (E4.29)
% _g
ot

As usual, we look for traveling wave solutions:

S; - Aei(pka—u)t)

SV = Bei(pka—wt)
» .

(E4.30)

Using this ansatz, solve the equations of motion and find the spin wave dispersion.

MAGNONS OF THE ANTI-FERROMAGNET

Now that we have warmed up to the classical equations of motion, we can consider
the anti-ferromagnetic case. The calculation is identical, except for the fact that we
now have a bipartite lattice.

We will need to include more terms from the Hamiltonian of exercise 3. The calculation
is easiest if we assign spin up to spins on positions 2p (the even sites) and spin down
to positions 2p + 1. This means that you will now have to write down the equations of
motion for both S,, and S,,,1. Show that doing this leads to four equations similar
to those obtained in exercise 1d. You can make the same approximation as was used
before.

Solving this set of four equations requires an extra step. Show that the four equations
can be reduced to two equations by forming the equations of motion for S§* = §* +1S”.

Find the dispersion relation for the anti-ferromagnetic magnons using a similar ansatz
as in exercise 3e.

Can you comment on the difference between the ferromagnetic and anti-ferromagnetic
dispersions? Discuss the qualitative difference between the two for small momentum
and compare the small momentum dispersions to other dispersions we have encoun-
tered during the course (for example nearly free electrons or photons).



SUPERCONDUCTIVITY

A tale of a love triangle: two electrons and one phonon.
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Figure 5.37: Left: Original schematic sub-
mitted by Carl Linde to the US patent office
(source: https://commons.wikimedia.org).
Top right: H.K. Onnes in 1913. Picture taken
after receiving the Nobel prize in physics.
Bottom right: original sketch with data
points indicating the disappearance of re-
sistivity.

The next metal he chose to investigate was
Tin. He reported that it didn’t show the
ballmark ‘supraconductive’ properties of
mercury. Te of tin i8 3.7 K. Less than half
a degree difference.

12 emanuel Maxwell from the National Bu-

reau of Standards, Washington D.C., sub-
mitted a paper to Physical review in 1950
where the isotope effect was first reported.
The paper starts as follows: “The existence
of a small quantity of Hg'®® at the NBS
prompted us to investigate its properties as
a superconductor’

He reported a change of T, = 4.156
K for natural Hg to T, = 4.177 K. This
seemingly insignificant difference holds the
key to the mechanism!

113 The theoretical framework makes experi-

mental predictions as well. Most of them
were of course ‘after the fact’

114 The story goes that Cooper bad this insight

on bis train ride bome after a long day of
discussion with the other two gentleman.

115 T date be remains the only person to have

ever won two Nobel prizes in physics. His
first prize was awarded in 1956 for the
discovery of the transistor; a year before
the BCS paper. In 1972 be received the
prize again for the theory of SC.
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5.1 A new state of matter: a brief history

He last chapter ends very appropriately with a Dutch discovery. Around the turn
T of the 20th century (July 10th, 1908 to be precise) Heike Kamerlingh Onnes was
able to turn a small amount of Helium into liquid. This was a phenomenal result that
many had strived to achieve (James Dewar was his fiercest competitor). Helium was
in fact the last gas to be turned into liquid. To achieve this Onnes used an ingenious
series of cooling stages (Fig. comprising expansion and compression vessels. This
technique, called liquefaction, allowed him to routinely create a cryogenic liquid and
for a while he had the coldest place (4.2 K to be precise) on earth in his laboratory.
With the machinery to refrigerate stuff in place he turned to fundamental studies of
the resistivity of metals at extreme low temperatures. Earlier experiments had led him
to the idea that as one approached absolute zero temperature, metals would turn into
perfect conductors. Lord Kelvin, James Dewar and others however predicted (correctly)
that impurities would always lead to a finite resistivity even at zero temperature. Having
access to the lowest possible temperatures, Onnes started by measuring the resistivity of
silver and gold. He soon realized that to study the resistivity he needed to purify these
metals: there were too many impurities (thus proving Dewar right). From his work on
liquefaction, Onnes had obtained the recipe to purify mercury. And so it was that on
April 8, 1911 Gilles Holst (Onnes’ assistant) and Kamerlingh Onnes cooled mercury to
the lowest possible temperature they could achieve. Have a look at the original data
plot in fig. [5.37} Onnes owes his Nobel prize to the fortuitous fact that (i) he could
purify mercury and (ii) that for Helium to be kept in its liquid state a bit longer, he
had found out that it helped to slightly reduce the pressure above it. The latter fact
meant that he was able to reach 4.18 K (instead of the boiling point of helium which
is 4.25 K), while the former meant that he had pure enough mercury such that the
critical temperature was maximal (7.=4.2 K). As happens so often the stars lined up on
the evening of April 8th and superconductivity was (barely) discovered!!!.

Superconductivity became the ‘enigma’ of solid state physics in the 20th century.
Many famous physicists (Einstein included) tried to construct a theoretical model to
describe the superconducting state and failed. As we will discuss in this chapter, super-
conductivity is a purely quantum phenomenon. It is impossible to understand from a
classical point of view. In the end several crucial experiments led to the first working
theory. First, Kamerlingh-Onnes discovered in 1912 that a current flowing through
a superconductor did not diminish with time. In 1933, Meissner and Ochsenfeld
discovered that the magnetic field inside a superconductor was exactly zero. Another
‘smoking gun’ experiment was the discovery of the isotope effect (1950-1953)!!2. In an
isotope effect experiment one takes a naturally occurring elemental superconductor
(e.g. Hg, Pb, Nb etc) and determines its critical temperature. Then the element is
replaced by its isotope as much as possible (Hg*® - Hg'"®) and the critical temperature
is determined again. For elemental superconductors it was found that the critical
temperature depends on the mass of the element involved as,

1

e (5.1)

T,
A little later Bardeen, Cooper and Schrieffer published their seminal work (1957). We
will discuss their achievements in more detail below, but it pays to summarize their
results up front. They ‘predicted’!3 that the nearly free electron gas was unstable to
attractive interactions between the electrons. In other words, they could show that
if you include a finite attractive interaction between pairs of electrons, they would
form new ‘quasiparticle’ states (called Cooper pairs'!*) that would have charge 2¢ and
total spin moment S = 0. These new quasiparticles would therefore obey Bose-Einstein
statistics and undergo a kind of Bose-Einstein condensation into a zero momentum
state. Although they suggested that the electron-phonon interaction might be the
origin of these attractive interactions, they constructed their theory in a interaction
independent fashion. Among the experimental predictions the most famous one is
probably the opening of a gap in the density of states at the Fermi level. At the time
of writing it was not possible to directly measure the density of states, but this effect
would be clearly visible in several experimental probes, such as the specific heat or
the optical spectrum. The BCS theory was (and still is) a great success and it delivered
Bardeen his second Nobel prize in physics'?°.

After BCS it took a few years to verify and explore the implications of their theory
that, in the end, led to a ‘complete’ theory of electron-phonon superconductivity in
1962 due to Eliashberg. In the next section I'll explain how you can turn the repulsive
Coulomb interaction into an attractive potential between two electrons as well as the
role played by the phonons.



5.2 Repulsion becomes attraction

The question that remained unanswered after BCS theory was how an attractive
interaction between electrons would come about. There is only one interaction that
couples two electrons together in a solid and this is the repulsive Coulomb interaction.
However, as we have seen in Chapter 2, the Coulomb interaction in a solid is screened
by the other charges in a solid by the dielectric function. As exercise E2.2 shows the
Fourier transform of the Coulomb potential can be written as,

Vi(k,w) = ﬁ (5.2)

where the momentum dependence of the dielectric function in its simplest form is,

ke

ek)=1+ = (5.3)
Here krr is the Thomas-Fermi screening length, the distance over which electrons
can screen the disturbance caused by an accumulation of charge. However, since the
k-dependent piece of the dielectric function is positive, the Coulomb repulsion between
two electrons (q; = > = —e) will always remain repulsive. So what about the frequency
dependent piece of the dielectric function? Within the Drude-Lorentz model we ended
up with the following expression,

w? 4m 2
fw)=1-—L -3 )
w(w+1I7) 0 iwlp, - (QO,ph -w?) (5.4)
Z a7 f? '
Wl - (- w?)

Here the first term was the intraband (Drude) response, the second term a contri-
bution due to optical phonons and the last term derives from interband transitions.
For the sake of briefness, let us assume that the only important part is the phonon
contribution!'®. Taking just a single phonon mode into account we can drop the sum ' We are considering electron-phonon super-

over different optical branches and find, conductors after all.
2 47 f2
éhw) =1+ 577 — (5.5)
k2wl - (Qo,ph —w?)

which we should now insert into Eq. [5.2] This gives,

2
Vk,w) = ¢ T (5.6)
k2 + k2, — k2 ph

W ~QF y=w?)

which needs some rewriting to see if this is attractive. For simplicity we assume an
infinite lifetime of the phonon mode (I" = 0) and divide out a term (k? + k2,.):

2

Ve = e — (5.7)
T
(k> + k) (1 -kZM)
Next we multiply by ‘1
e(w* - Q}
V(k, w) _ ( O,ph) (58)

4 f2
k2 +k2) ((wz —2 - ﬁ)

Now note that in the denominator the second term in brackets defines a momentum
dependent divergence. In other words, at a frequency,

2

K2+ k2,

47 3
(ORI S i } (5.9)

the interaction diverges. Note that this frequency is (almost) completely determined
by the properties of the phonon mode (the resonance frequency and the oscillator
strength f;,). Inserting this back into the expression for the potential energy we have,

e(w? - Qé)ph)

VW) =557 k2w — )

(5.10)
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Figure 5.38: Color plot of the potential in
Eq.[5.10]for suitably chosen parameters. The
color scale is chosen such that white corre-
sponds to (close to) zero, while blue is at-
tractive and red is repulsive.

17 If you wonder why the two electrons do

not simply ‘collapse’ under an attractive in-
teraction: apart from the potential energy
there is also kinetic energy. The Heisenberg
principle will tell you that as you confine
the two electrons in a smaller and smaller
energy, their kinetic energy (ox Ak) will
increase. The ‘size’ of the bound state can
in fact be estimated from the balance of
kinetic and potential energy.

118 The notation is a bit strange: the potential
does not depend on r, but on w and so it
18 attractive independent of r if the energy
of the pair is smaller than wp.

19 The A appearing here is just a normaliza-
tion factor.
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Now note that the numerator will be negative if w < Q, 4, while the denominator
will be negative for w < wy. Looking back to equation we see that wy > Qq
for a small range of frequencies. In other words, the potential will be negative for
Qoph < W < wy. Figure shows the potential as a function of momentum and
frequency for a suitably chosen set of parameters. Note that I have restricted the color
range to highlight what happens at low energy and momentum. The most important
point is of course the fact that you can see a reasonable ‘blue’ area, which is where the
potential is attractive.

This is the crucial ingredient behind superconductivity: the interaction between
electrons and phonons gives rise to a dynamic interaction that can become attractive.
The reason for calling the interaction ‘dynamic’ arises from the frequency dependent
piece of the interaction. In our current model we have assumed a simplified nearly free
electron gas where the Coulomb potential depends on the magnitude of momentum,
but not on the direction. This is really a result of the fact that we started by assuming
a spherically symmetric dispersion. In real materials the momentum dependence can
be much more complicated as a result of bandstructure and crystal symmetry. This in
principle can give rise to different types of superconductivity. We will return to this
point later.

5.3 The Cooper problem

In the previous section we have seen how the electron-phonon interaction can result
in an attractive potential between two electrons. But what is the wavefunction for two
electrons under the influence of an attractive interaction? Cooper realized that such
an attractive interaction would result in a bound state of the two particles (very much
like an H, molecule)'”. In this section we will follow his derivation of both the wave
function and its properties. It is possible to use the form of the potential derived in
the previous section, but we will very quickly have to resort to numerical evaluation
of integrals. Instead we will follow Cooper on his train ride home and assume that the
potential is spherically symmetric and has the form,

yy=)V w<wn (5.11)
0 W= Wwp

This is just a constant spherical potential well which is attractive over some range of
energies. What this actually means in the Cooper problem will be discussed in more
detail at the end"'®. In what follows we will consider the quantum mechanical problem
of two electrons interacting with an attractive potential and solve it by (i) guessing a
trial wavefunction, (ii) transform coordinates to center of mass coordinates, (iii) use a
variational approach to determine the binding energy for the formation of a bound
state. As usual, we first define the Schrodinger equation,
R, R,
-— Vi1 - —V5+V(r1 —r2)| Y(r1,12) = E¥(r1,72) (5.12)
2m 2m
Let’s start with a first guess of the wave function for two particles with momenta k;
and k,. What would be your guess for the wavefunction? I hope that based on reading
the previous chapters, your answer is,

Y(ry,ry) = A1t 4 B2 2 (5.13)

Unfortunately, this is also wrong. The key insight contributed by Cooper, was that this
is not the correct wavefunction. The linear combination principle breaks down for this
particular problem. Note that this is a crucial departure from the basic mathematical
structure of early quantum mechanics. The idea had always been that for a given
physical system it must be possible to write down a complete set of basis states and
that the wavefunction had to be a linear combination of these states. In terms of linear
algebra, any vector (groundstate) in the (Hilbert) space defined by a set of basis vectors
can be expressed as a vector sum (linear combination) of these basis vectors. If you
imagine a universe with two non-interacting electrons, your Hilbert space is spanned
by two plane wave states. Adiabatically turning on a small interaction, you would
expect that the new groundstate is a linear combination of these two plane wave states.
Cooper made a radical departure from this and postulated a new guess!'*:

WY(ry,rs) = Aeltimisan) (5.14)
Note that the energy associated with this state (without interactions) is still,
hZ
Ey= ﬂ(k% +k3) (5.15)



as you would find for two independent electrons. The reason Cooper chose this partic-
ular form is that it allowed him to rewrite the problem in centre of mass coordinates.
In this case we will have,

kl —kz
== 5.16
5 (5.16)

R :%, roo=r-nr (5.17)

K = kl +k2, k

where K, R refers to the centre of mass, while k, r refers to the motion relative to the
centre of mass. With these definitions we can rewrite the wavefunction as,

W(R, 1) = AeK-RekD) (5.18)

And the energy in the absence of interactions will be,

2 /2
Ey= %(% +k2) (5.19)
or in the case K = 0'%, 120 For a single particle we would find Eq =
12k
212 2m
Ey= L (5.20)
m

The lowest energy for a Cooper pair is thus obtained if K = 0, which means k; = -k,
with a corresponding wave function,

Y(ry,ry) = AdCT772) = AT = Wi(r) (5.21)

We now have a single plane wave, trial solution that is fundamentally different from
the ones we have used so far. The Schrodinger equation for such a pair reads

2 2
—%V% - %Vg +V(ry—r)| Y(r) = EY%(n) (5.22)
which can now be rewritten as,
[(Eo—E)+ VN I¥(n =0 (5.23)

Assuming now that the wave function has the form of a superposition of our newfound
trial states,

W) =AY ae" (5.24)
k
the Schrodinger equation transforms to,
A (Eo-Eare™ + A Y V(rae™ =0 (5.25)
k k
~ik'r

and integrate'!, 2! Note that on the second line we can trans-
form one integral to a d-function, but not

Just like we did for the tight binding problem, we now multiply by e

3 i(k=k') 3 k=K _ for the second term since there is an addi-
z / d'r(Eo - Eae™ " + z / drV(rae™"" =0 (5.26) tional r dependence in the potential. We
k k have also dropped the A.
Z(E() - Ek)akd\k!k/ + z /dSTV(T’)akei(k_k,)r =0 (527)
k k
(Eo— E)ay + Y, / drv(rae*r =0. (5.28)
k

And this brings us to a new ‘central equation, but this time for two electrons bound
in a cooper pair. The solutions of course depend on our choice for the potential. As
mentioned above, the simplest choice is to assume a constant spherically symmetric
potential. The neat result obtained by BCS is that, no matter what the potential looks
like, as soon as there is a non-zero attractive potential, Cooper pairs will form. Note
that the second term in contains just the Fourier coefficients of the potential,

(Eo—Ex)aw + Y a / drv (et =0 (529)
k

(E() - Ek/ )akr + Z aka,k/ =0 (530)
k

Hopefully, the pattern looks familiar. We started by assuming a trial wave function
consisting of a linear combination of basis states. From the Schrodinger equation we
then obtain a relation between all coefficients of the trial wavefunction. The next step
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122 I the full electron-phonon interaction the-
ory the precise frequency dependence of
the phonon branches is taken into account.

hwp

Occupied states

Figure 5.39: Fermi surface (dark red) with
a narrow shell of energies with e < ¢ <
er +hwp indicated in light red.

123 We make use bere of €q.
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will be to eliminate the dependence on the coefficients (e.g. by solving a set of coupled
equations using linear algebra) and find the energy spectrum of the solutions. To solve
the last set of expressions we take a slightly different approach and follow the original
derivation of Cooper.

The sum over momenta cannot be evaluated without making an explicit choice
for the Fourier coefficients of the potential. Cooper noted that there would likely
be restrictions on the allowed momenta in the sum. After all, the Pauli principle
combined with energy and momentum conservation will prevent most scattering
processes. In the case of phonon assisted scattering (as discussed above), the allowed
energy range is determined by the average phonon energy. This is exemplified in Eq.
[5.11] that depends on a frequency wp, the Debye frequency, which is a measure of this
average phonon energy'?2. It is important to note that this average energy is typically
a small number compared to the energies of the electrons involved. For example, for
Pb the Debye frequency is about 5 meV, while the Fermi energy is on the order of 5 eV.
They differ by a factor 1000!  The interaction potential enables two electrons with
momenta ki, k, to scatter to a new state with k, k, by ‘borrowing’ some energy from a
phonon. Since this energy is small compared to the Fermi energy, only a small fraction
of all electrons is sensitive to this interaction. This is depicted in Fig. [5.39 where the
narrow range of momenta states around the Fermi level is indicated within which
scattering can take place conserving both energy and momentum. From Fig. [5.39 we
see that the two particle momentum has to fulfill the condition,

h2k?
26): < —X< 26): +2.th (531)
2m
We therefore take,
Vo €p<é<ép+hwp

Viw = 5.32
bk 0 otherwise. ( )

Starting from Eq. [5.30} we thus have,
(Eo—Ex)ay = Y aVo=C (5.33)
k
where C is a constant. This implies that,

(5.34)

ap =
Eo - Ek/

This observation allows us to eliminate the coefficients. Summing Eq. over

momenta we obtain,
1
ar=C (5.35)
zk: Zk: Eo - Ex

Since from we have,
C
Vi ay = C—> ay = — (5.36)

we can eliminate the sum over g; to find a relation between the eigenvalues and the
interaction,

1 1

Vo ' Eo-Ek

(5.37)

Keeping the restrictions arising from our choice of the potential in mind, we can
transform the sum over momenta into an integral over energies'??,

€ p+hwp
1. / SE)E, (5.38)
Vo er Ey-E

where f(E) is the density of states for pairs with energy E,. Since we allow only pairs
to form within a narrow energy shell around the Fermi level, the density of pairs is
approximately equal to the density of states for electrons at the Fermi level,

5f+th dE
L oen) / L (5.39)

o 0—

The integral is now easy and gives,
1 Ep+ hLIJD - E)
— = In{ ———= 5.40
- =olen)in (1D (5.40)
= o(er) In (1 + ;’“’DE) (5.41)
-



from which we can estimate the gain in energy for electrons to form a bound state as
follows. To form a bound state the energy needs to be lower than the energy of the
free electrons. In other words, E = ¢z — A where A is the energy gain per particle. From
this is it follows that ¢z — E = A and so,

m =In (1+h%). (5.42)
Solving for the binding energy we find,
- el/o(il:vlz 1 43
For small interactions, ¢(ef)Vy < 1, this further simplifies to,
A = hwpeVVoeter), (5.44)

This is an interesting result: it shows that no matter how small the interaction Vj is, if
it is non-zero electrons will always gain some energy by forming a bound state. It also
shows that you cannot turn an insulator into a superconductor. The early recognition
that BCS got for their theory derives from another feature of this expression. Very
roughly one expects the critical temperature to be proportional to the bound state
energy'* i.e.,

Comparing this with Eq. [5.44 we find,

| k
kBTC = Wp = M, (546)

which provided a very simple explanation for the isotope effect. The Cooper solution
also gives a simple explanation for the ‘zero resistance’ state. As in a normal metal,
the conductivity (or resistivity) is determined by states close to the Fermi level, which
deep in the superconducting state will consist of Cooper pairs. Looking back to our
wave function and Schrodinger equation we see that the wave function for a pair can

be written as'®,

Wk +K/2,~k + K/2) = e *W(k, k) (5.47)
This means that the velocity of a pair is simply,
V= ﬁ (5.48)
2m

and hence current will be proportional to,

__neh

= 5.49
= (5.49)

where n; is the supercurrent density. So, let’s imagine that we set a current in motion.
In a normal metal we will reach an equilibrium between the acceleration provided
by the electric field and the (random) scattering of electrons on impurities. In these
collisions an electron changes its momentum from a state k to a state k' = k + g with an
associated loss in energy. Remember that these scattering processes take place close to
the Fermi level. In the superconducting state there is now an additional restriction:
for the momentum to change we first need to remove the electron from the Cooper
pair state and there is an energy cost of 2A associated with that. In other words, when

(kKR R
m m

2A (5.50)
there is not enough energy to break up the Cooper pair. Since the typical momentum of
each electron in the pair is of the order of the Fermi momentum, kr, we have (K << k),

2
h*kpK -
m

2A (5.51)

Combining this with our expression for the current, we find that as long as we satisfy

the condition,
. ngeA
Jo<—= (5.52)
hkg
there is no mechanism by which the electrons can lose energy. This is the origin of the
zero-resistance state: it costs almost no energy to set Cooper pairs in motion (just as in
the free electron model, € o< K2) and as soon as you set a Cooper pair flow in motion
there is no way to dissipate the energy.

124 This is ‘easy’ to see: if the energy asso-
ciated with thermal fluctuations, kgT, i3
larger than the energy of the bound state,
A, Cooper pairs will be destroyed.

125 Since the potential does not depend on K or
R, the wavefunction is separable and the K
dependent piece bas to be an eigenfunction
of the total momentum. Hence it can be
written as a ‘plane wave’
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126 This section and the next follow largely
the derivation presented in the book by
Economou (see reading list).

127 The symmetry that is broken is known as
a U(1) gauge symmetry. It i8 because of
this symmetry that you are free to choose
the electromagnetic gauge potential.

128 At this point it is not obvious why momen-
tum should be involved. u and v are just
complex numbers. As we will see, the pre-
cise value does depend on momentum.
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5.4 The Bardeen-Cooper-Schrieffer groundstate energy

In the previous section we cheated a little: we started out by calculating the gain in
energy of a Cooper pair (involving only 2 electrons) and then made some statements
that concerned all electrons at the same time. In this section we will fix this and
take Cooper’s idea about bound electron states and try to do the same exercise for all
electrons at once. This turns out to be a bit more complicated, but the physical idea is
exactly the same!%,

We start again with the Cooper wavefunction (written in bra-ket notation now),

Y(r) = [K)|K). (5.53)

Since this is the proper solution to the two particle problem for a given k, we might
expect that the wavefunction for all pairs is a linear superposition of pair wavefunctions,
ie.

W= clk)|-k). (5.54)
k

Alas, just like linear superpositions didn’t work for two particles, it doesn’t work for
many particles either. BCS had another ingenious ingredient to their theory. The
Cooper pair is essentially a ‘particle in a box’ model and as such does not directly
apply to a solid. After all, all the electrons are indistinguishable and it is not obvious
why two particular electrons are likely to form a pair. Even when many electrons
do form pairs, it will cost no energy for electrons to exchange between different pairs.
This doesn’t feel very comfortable. It also doesn’t fit well with the identification of
‘particles’ with excitations of a solid. Just like band-electrons are the excitations of
the metallic state and spin-waves are the excitations of the ferromagnet, Cooper pairs
are excitations of the superconductor. In both other cases we had a description of the
‘vacuum’ state (a.k.a. the groundstate). For the metal it is a linear superposition of the
single particle wave functions (atomic orbitals) while in the ferromagnet it is a linear
superposition of spin states. We also remarked (without further specification) that the
anti-ferromagnetic groundstate was special. The superconducting groundstate also
turns out to be special. In the case of a superconductor a symmetry of the Hamiltonian
is also broken'?” and as a result a linear superposition of basis states is no longer
appropriate. So what should we choose? Unfortunately, it is not so easy to justify the
choice we are about to make without resorting to ‘second quantization’ It boils down
to the observation that in interactions between Cooper pairs, 2 pairs are involved:
scattering two particles from a state (k,—k) to a state (k’,—k’)’ implies that an ‘empty’
Cooper state (k',—k") becomes occupied and a new empty Cooper state (k,—k) is created.
This led BCS to suggest that the correct wavefunction should take as basis states,

02(k) = ug |Or) +vi |k, k) (5.55)

The function ¢, exemplifies precisely this mixing of empty and full Cooper states.
|Ox) represents an empty Cooper pair, while |k, -k) represents an occupied state. The
coefficients uy and u;, measure the relative mixture of empty and occupied for a given
state. Note that they depend on the internal momentum of the pair, anticipating on
the outcome of the calculation to follow!?%. For reasons beyond the scope of these
notes the trial wavefunction becomes,

Gy =[] 026y = (ur [Ok) +vic [k, k) (5.56)
k k

and not a linear superpositions of the ¢,. |G) has an uncomfortable property: the total
number of particles is not conserved. To see this, we start writing out the product,

‘G) = (le1 ukz...ukN |Ok1> |Ok2> |OkN>)+ (l)k1 |k1,—k1> ukz...ukN ‘Ok2> |OkN>)+ (557)

and note that the first term contains no electrons, the second 2 electrons, the third
term will contain 4 electrons and so on. This is a real problem, but we will fix it in
a moment. To continue, we now need to define the problem we are trying to solve.
Similar to what we did for the Hubbard model, we start from a known Hamiltonian
(written in “first quantized’ form),

Hy = e@1q) (9] = Y el (5.58)
q

q

where we identified 71, = |q) (| as the Fourier components of the single particle
density operator and the ¢(q) describes a band crossing the Fermi level. We add to
this Hamiltonian a potential energy term H,_.. We do not necessarily need to provide
an explicit form this interaction. Instead, we make use of the ideas we developed in



solving the Cooper problem by stating that the potential has Fourier components
Vi.r- This can perhaps be made more insightful by showing you the Feynman diagram
describing the scattering process (Fig.[5.40).  This figure shows that two electrons
(one Cooper pair) with momenta (k,-k) are scattered by the interaction to new states
with momenta (k’,-k’). In this process momentum needs to be conserved, and so the
interaction will necessarily depend on both k and k’. This brings us to the point where
we can start to calculate the groundstate energy from,

(G| H|G) = (G| Hy |G) + (G| He—. |G) (5.59)
Let’s look at the first term on the r.h.s. of this. The energy is just a number so,

(G| H, |G) =Y e(q) (G| g |G) (5.60)
q

and this just counts the number of particles with momentum g in the state |G). Making
use of the definition of |G) (Eq.5.56)) we have!'?,

(GlAg|G) = [ (92(0)] g |92(K)) (5.61)

k'
We can evaluate the action of the density operator on the state |¢,(k")) as,
flq ‘(Dz(k’)) = ﬁquk/ ‘Okr> +ﬁqvk/ ‘k’,—k’) (562)

If you have never seen these kind of operations before, i’ll first give you an explanation
of how to evaluate this in words. The operator 71 ‘measures’ the number of particles. In
our case we have a momentum number operator that counts particles with momentum
q. If this operator acts on a random quantum state with momentum k it will always be
zero. Unless...k = g. A simple mathematical way to formulate exactly this is,

fig k) = gy k) (5.63)

The delta function is zero except when g = k and we see that |k) is an eigenvector of
the operator 7, with eigenvalue 1. Now to evaluate Eq. we observe that the
number of particles with momentum q in the unoccupied Cooper state |Oy ) is (quite
obviously) exactly zero. It is an empty state after all. There are however two particles
in the occupied state and so,

flq |¢2(k’)> = Ukrdq,kr |k’,—k/> +l)k/(5qu/ ‘k/,—k,> (564)
We can now evaluate the expectation value of the momentum density operator as,
(@2(0)| 71g |92(K")) = (ug (Ok| + v (ky=k)Wp g [K',=K') + 000y 0 K, =K')) (5.65)

Writing out this product we get 4 terms, but the two terms in which |Oy) appears
evaluate to zero'®. This leaves,

(02(0)| 71 |92(K")) = vpvw Oyper (ky—=k|K',=k") + Vv g (K, —k|K', k") (5.66)

now we note that the bra-kets appearing here are orthogonal if they do not have the
same momentum. Therefore we can replace these with a d-function (i.e. (k,-k|k',—k') =
Tipr)

(02(k)| g |92 (k")) = VgV O o O pr + VRV O i O (5.67)
This now allows us to evaluate Eq.
(G He |G) = [T D e(@) (02(k)| g 92(K) (5.68)
kk q

It is not quite obvious how to deal with both the sum and the product simultaneously.
However when you expand the product, there is only one term corresponding to the
diagram in Fig. [5.40|for every k and k¥’ and these appear in all combinations. In other
words for every k and k’ there will be a term of the form,

€(@) (#2(kD)]92(k))) (92(k2)[02(K3)) ... (92(K)| g, [92(K)) .. (d2(kn)[@2(Ky))  (5.69)

Because the states |¢, (k")) are supposed to be normalized, all these terms evaluate to 1
except the one containing the expectation value of 7i,. Inserting Eq. in this term
and summing over all possible g gives a single term,

€(k/)U]:Ukr dk,k’ + E(—k/)l);l)k/dk’k/ (570)

Time

Figure 5.40: Feynman diagram for the scat-
tering of a Cooper pair to a new state. The
interaction is indicated as the wiggly line.

129 Notice that we get two products, one over
k and one over k'.

130 This is because the overlap (Og|k',~k') s
zero.
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131 Note that if we set Vi to zero, we end up
with v, = 1 and we have a tight-binding
metal.

132 Following the same arguments as the one

leading to €q.
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and since we will obtain such a term for all possible k, kK’ we need to sum over these
variables. Therefore,

<G| Hy |G> = Z E(k/)l)/:l)k/dk,kr +€(—k’)v,:vk/dk’k/ =2 Z €(k)l);l}k (5.71)
kK k

where in the second step we have used the fact that e(-k) = (k).
The next step in our calculation of the groundstate energy requires us to evaluate
the potential term, X
(G| Heee |G) = [ | (920)] Heze |02(K")) (5.72)

k,k!

This is really a bit more tricky. To understand how to evaluate this we refer back to Fig.
As indicated, time progresses in the vertical direction in this Feynman diagram.
That means that in the bottom part of the figure the state,

|92(k)) = (ug |Ox) +vx |k, —k)) (5.73)

has a large vy and small u;, while simultaneously the state |¢,(k")) has a large u and
small vp. At the end of the interaction the roles are reversed. This implies that (i) the
interaction only links states k and k' and (ii) only 1 term gives a finite contribution.
In other words, we can replace the product by a sum (similar to what was done in Eq.
[5.71)

(Gl Heee IG) = 3 (02(0)] (9200 Hee [920)) [02(K')) (5.74)

k,k!

and we need to evaluate the product appearing here. It is not hard to see that out of
the 16 terms arising from this product only 1 corresponds to the diagram in Fig.
Therefore we are left with,

(G| Hoee |G) = S v}y (K, K| Hee [k, =k) o0 (5.75)
kK

The term in brackets is just a number quantifying the interaction strength for electron
states scattering from a state with momentum  to a state with momentum k',

1 * ok
(G|H, |G) = v D wpvpup Vg (5.76)
k.k

The energy for the BCS groundstate is thus given by,

. 1 .k
(G|H|G) =2 Z e(k)vve + v Z UV U Uk Vi (5.77)
k Kk’

The next step we need to take is to find expressions for u; and vy, such that the total
energy is lower than the energy of the original metallic state'®!. It turns out that this
is not so simple: the BCS groundstate |G) is not an eigenstate of the Hamiltonian; as
pointed out before the number of particles is not conserved. The problem can be fixed
by working with the grand canonical ensemble, which is the topic of the next section.

5.5 Optimizing the BCS grand thermodynamic potential

In the grand canonical ensemble we minimize the grand thermodynamic potential,
Q=U-TS-uN, (5.78)

rather than the energy U itself. Since we are going to be interested in the groundstate
for the moment, we can work at zero temperature ignoring the term -7S. The chemical
potential in a solid is fixed and chosen to be equal to the Fermi level in the normal, non-
superconducting state: p = Eg. This is not unreasonable since at elevated temperatures,
above the critical temperature, the system needs to return to a normal metal where
the chemical potential and Fermi level are the same. The total energy U is given by Eq.
while the total number of particles is given by'32,

N. =Y (G| ng|G) =2 viw (5.79)
q k

Note that this expression actually makes sense: |vx|? is the probability of occupying
the state |k,—k >. Each of these states has 2 particles in it and therefore summing over
all the occupied states should give the total number of particles. By including this
as a condition in the optimization of the energy functional we ensure that the total



number of particles remains fixed at N,. Putting it all together we find that we need
to optimize the following potential:

Q=2 Z e(kyvivi + % Z upvp U Ny g — 2 Z Ui Uk (5.80)
k ok %

which can be simplified to,

. 1 . .
Q=2 Zk: de(kyv, v, + v % U VU VeV (5.81)

by defining de(k) = e(k) — Er. Next we note that the grand thermodynamic potential,
corresponding to an energy, is a real number. It is however expressed in terms of
complex numbers u; and v, and their complex conjugates. It is therefore sufficient to
minimize Q with respect to one of these components!®. In other words, taking:

0Q _
ovy,

(5.82)

will minimize the grand thermodynamic potential. We can make use of the normal-
ization of the wave function to find a relation between the derivative of u; and v;. By
taking the derivative of

uguy +vpvp =1 (5.83)
with respect to v; we find,
o _ U (5.84)
oy

This should be used as a chain rule when minimizing the grand thermodynamic
potential Eq. using Eq. From this we find that the grand thermodynamic
potential is minimized when,

2
£ Z uk/l),:/ka)k/ =0 (585)

1 1v
20e(k)vr + — Y U upvpy Vi p— —
(i V;kkk ok Vi

At this point we are going to make the assumption that we are dealing with a homo-

geneous system, so that we can take u; and v, as real numbers'34. Rearranging then
gives,
2 3
(v, = = Up Vp Vi — — Ll/U/CV/, 5.86
()ka;kkk,k V;Mk,k (5.86)
which can be rewritten as,
20e(k)vpuy = (VF —up) Ay (5.87)
by defining the gap function,
1
A = v Z Uy Uk’Cvk,k’ (5.88)
k/

Equation [5.87) can be turned into a self-consistent solution by making use of the
normalization of the wavefunction, u} +v} = 1. In order to do this we square Eq.
and write,

(2de(k))*viu} W} -ud)* A}
Wf +uf - 220uD)A}
(W} +up)* - Qiu}) A}

(1-4iup)A} (5.89)

Where we made use of the normalization condition in the last step. Rearranging gives,
4 [de(k)* + AY] viug - Ag =0 (5.90)

This is a fourth order equation for the u; and v, that can be solved (using the normal-
ization condition once more) to give,

2 1 dE(k)
== (12280 (5.91)
72 \/de(k)? + A2
and
elf1s 050 (5.92)

2 \/de(k)? + A2

133

134

See for example, D.G. Messerschmitt @
btpy/fwww.eecs.berkeley.edu/Pubs
/TechRpts/2006/€ECS-2006-93.pdf

If the uy. and vy are complex, this results
in an overall complex phase of the wave-
function. In a uniform material this phase
is meaningless and we can ignore it. In
Ginzburg-Landau theory non-uniformity
i8 taken into account and the phase does
matter.

..Eq’s and satisfy the
self-consistency and normalization
condition.
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and that is the final result. We have obtained expressions for the coefficients appearing
in the BCS wavefunction that minimize the grand thermodynamic potential. It
remains to show that this potential has a lower energy than the normal state grand
thermodynamic potential. That is, we need to determine:

Qy-Qsc=2) de-2) dewp-2) dew; - (G| Hee |G) (5.93)
k<kp k<kp k>kp
This is not completely trivial. It can be shown that this is equivalent to,
[, oo
2E; E;

Qy-Qsc =)

- |d€k|} (5.94)
k

which after changing from sum to integral over energy and making the standard
approximation of the density of states at the fermi level gives,

1
Q- O = S oler)A? (5.95)

A more elegant result is obtained when we combine Eq. with the expressions for
the wave function coefficients. This gives,

A=t Vigle (5.96)

V& 2\ /de(k)? + A2

which is known as the BCS gap equation. This equation is really equivalent to a
self-consistency condition. For a given set of Fourier coefficients V ;, we solve for the
gap Ay. If Eq.[5.96|has a non-trivial (e.g. non-zero) solution, the normal state is unstable
and a superconductor will form. Although this is the real result we set out to obtain,
we have achieved much more along the way. If you got lost in the purely mathematical
treatment so far: the next section aims to explain you the physics underlying it all.

5.6 Bogoliubov quasiparticles and the energy spectrum of a supercon-
ductor

The physics behind superconductivity is really quite strange. The origin behind the
strangeness is quantum mechanics: a superconductor is a material in which the elec-
tronic properties are described by a single, macroscopic coherent quantum state. What
does that mean? It means that the concept of electrons should really be forgotten
when you think about the low energy properties of the superconducting state. Instead,
the system is described by a coherent state that can be called a ‘vacuum state’ There
are no particles in this state (hence the name). If we somehow implant a minimal bit
of energy in this vacuum state (and the minimal quantum turns out to be 2A) we will
create a particle pair called a Cooper pair. This is not a coupled pair of electrons. It
is a particle with a certain mass and charge equal to two electron charges. It has spin
zero (at least in the elementary superconductors that fall within the BCS universality
class). This particle is sometimes also called Bogoliubon after the mathematician that
invented a neat trick to diagonalize the BCS hamiltonian in second quantization in
three lines.

Before explaining the energy spectrum in a bit more detail, I would like to reiter-
ate this point. A superconductor is not simply a collection of bound states of electron
pairs! The wave function describing electrons involved in the superconducting dance
is really a completely different object from the ‘simple’ plane wave or tight binding
states from which we derive our intuition. In the superconducting wavefunction the
coordinates and momenta of all the electrons are coupled together into one single
wavefunction!

To elucidate the results obtained in the previous section I will now first discuss the
energy spectrum in the normal state in terms of our new wave function. To discuss
normal state properties turns out to be relatively straightforward. We will refer to
Fig.[5.41]in what follows. Interestingly, the normal state tightbinding metal can be
equally well described by the BCS wave function. To see this we set A to zero in Eq.
and[5.92} We also note that the real solution has to describe the band dispersion
in the normal state and so the only appropriate choice for the signs is determined by
the condition that v, = 1 and u; = 0 for e(k) < Er. We therefore obtain,

U%: 1 (1_M) (5.97)
2 |e(k) — EF|

2=l <1 N M) (5.98)
2 |eCk) - Er|
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up =0 ‘ll u],% >0
v,% 1
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In the context of the BCS wave function this describes exactly the energy spectrum
of the normal metal. For momenta k < kr we have vy = 1 and the state |k,—k) is
completely occupied. At the same time, for k > kr we have that u; = 1 and the state |Ox)
is completely occupied. This is equivalent to saying that (at T=0 if A = 0) all electron
states below the Fermi level are occupied and all states above the Fermi level are empty.

Now comes the magic of the superconducting state. We assume for the moment
that there is a momentum independent, finite attractive interaction (i.e. Vi = -V,
for a range of energies, see Eq.[5.11). This allows us to rewrite Eq. [5.96]as,

% 1
— = 5.99
Vo4& 2V/de(k')> + A2 (5-99)

This can be solved following a similar approach as was used for the Cooper problem (Eq.
[5.38). The end result is in fact equivalent to the result obtained there (Eq.[5.44). We
have found that in the presence of a finite attractive interaction a finite gap develops.
In fact, the new energy spectrum will be given by:

B = \[OekP + A7 = /(b)) + A} (5.100)
which shows that A really corresponds to a gap in the excitation spectrum. This
is exemplified in the right-hand panel of figure As is clear from a comparison
with the spectrum on the left, a gap develops around the Fermi level of order 2A. At
the same time, the values of the u; and vy are no longer strictly equal to one or zero.
Instead, their value close to the original Fermi level indicates that the wavefunction
attains a strong mixed particle-hole character. The variation of the wave function
coefficients can be calculated quite easily and they are shown in Fig.

To conclude this section we note that the BCS gap equation in fact allows many
more solutions. We repeat it here once more,

Viw Ay
Ak:—l Kk A

4 %‘ 2,/0e(k’? + A2

So far we have assumed that the interaction responsible for superconductivity is the
electron-phonon interaction. We have shown in section[5.2] that the simplest form of
the electron-phonon interaction results in a momentum independent interaction that
is attractive over a small range of energies. As the gap equation Eq. [5.99shows, this is
enough to provide a finite, momentum independent gap. Superconductors that follow
this paradigm are called s-wave superconductors. Note that the characterization
‘s-wave’ has nothing to do with the orbital character of the wave function! A band
containing any mixture of s-, p- and d- orbitals crossing the Fermi level can support s-
wave superconductivity. The nomenclature actually arises from the spherical symmetry
that is implied by the momentum independence of the gap: everywhere on the Fermi
surface of an s-wave superconductor a gap of size A opens. It is however completely
reasonable to assume that the interaction has a momentum dependence. In this case
the nature of the gap can be completely different (and momentum dependent!). An

(5.101)

Figure 5.41: The energy spectrum for the
normal (left) and superconducting (right)
states. The SC state is characterized by a gap
at the Fermi level, which is considered to be
the order parameter of the SC state. Also
indicated in both cases are the approximate
values for the vy and u.

Intensity

Figure 5.42: Variation of the coefficients uy
and vy along a high symmetry momentum
direction.
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A<0 A>0

A>0 A<0

(7, 0)

A>0
A<0

A>0 A<0

Figure 5.43: Fermi surface of a high T, su-
perconductor (blue lines) and interactions
coupling different momentum states. Since
the interactions are repulsive, the gap has
to change sign between these quadrants.

135 This implies that the gap is zero at 4 special
locations in momentum space!
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interesting example is realized in the high-T, cuprate superconductors. It is
well established that the superconducting gap in that case follows a so-called d-wave
symmetry (see Fig. [5.43). Interestingly, a possible interaction leading to such a
symmetry was proposed around the same time as the announcement of the discovery
of the cuprate superconductors. Scalapino, Loh and Hirsch proposed a model that
involved anti-ferromagnetic spin-waves (see Chapter 4) as possible mediators of an
interaction between the electrons on 23 June, 1986. The interesting part is that the
interaction in this case is purely repulsive. The resulting order parameter is,

Ax = Dy (cos(kya) - cos(kya)) (5.102)

which has the interesting property that it is negative in two quadrants of the Brillouin
zone and positive in the other two quadrants'®. Note that only A? enters in the
expression for the energy spectrum so that the gap in the spectrum is always positive.
However, the negative values (corresponding to an oscillating phase) have experimental
consequences and can be observed in experiments where a junction is formed between
a conventional s-wave and a d-wave superconductor. In a similar spirit it turns out to be
possible to form p-wave superconductors. These come in different flavors because now
the orbital part of the SC wavefunction is anti-symmetric. The p-wave superconductors
can therefore come with three different spin-configurations (e.g. |1%), [{,{) and
(115 4) + ¥, 1) )/2). Not many p-wave superconductors are known. One of them, UCoGe,
was discovered in 2007 in Amsterdam by Y. Huang, A. de Visser and collaborators.

5.7 Epilogue

That is it. For now this is the last section of this set of lecture notes. I will discuss
experimental properties of superconductors during the lectures and let you derive
some in the following set of exercises. Perhaps next year this section will be replaced
with something more substantive. To be honest, I feel a bit ashamed as experimental
physicist not to have described some of the marvelous experiments that can be done
to really bring the topic to life.



EXERCISES V
ELECTRODYNAMICS OF SUPERCONDUCTORS

In this set of exercises, you will investigate the properties of superconductors in a magnetic field
(e.g. the Meissner effect) and the interaction between light and superconductors.

MAXWELL RELATIONS

In lecture 5, we discussed the interaction of light and matter. In this first section, we
summarize the Maxwell relations as well as a few useful relations. The four Maxwell
relations are:

v

V-D=0

V-B=0

fo:—lo—B (E5.1)
c ot

Vxljlzla—D+4—7tj.
cot ¢

You will also need the relation between the magnetic field and the vector potential:
B=VxA. (E5.2)

We will work in the Coulomb gauge, for which V - A=o. Finally, keep the following
useful identity in mind:

vX(vXﬁ)=v(v-ﬁ)—vﬁi (E5.3)

In the exercises that follow, I will work in CGS notation, so that

H=B

> >

D=E,

(E5.4)

i.e., we will not consider induced polarization or magnetization.

THE LONDON EQUATIONS

Well before the BCS theory was around, the brothers Fritz and Heinz London gave a
description of several known electromagnetic properties of superconductors, based
on the Maxwell equations. Starting from the Maxwell equations, they derived several
relations that together have become known as the London equations.

Historically, superconductors were considered to consist of two ‘fluids™ the first
was the normal state electron fluid and the second the superconducting fluid. As a
result, the response of a superconductor in applied magnetic or electric fields consists
of two terms. For example, the total current density f is defined as:

,]. =jn +js::> (ESS)

where the labels n and sc correspond to respectively normal and superconducting.

Close to the zero temperature, the response will be dominated by the superconducting

response!*. In the first exercise, we are going to derive several equivalent forms of the 3¢ This happens at kzT < hwp/2.
London equations and will use them in the ensuing exercises.

¢ A Starting from Newton’s equations, find an expression for
0Jse
. E5.6
" (E5.6)
Hint: First figure out which forces are working on the superconducting electrons. You

can assume for now that the normal electrons do not contribute to the current. Also
keep the two defining aspects of a superconductor in mind.

‘B Prove that:

> 2 >
Uxje+ 5B = 0. (E5.7)
mc

( Using the result of exercise 1b, show that the following relation is satisfied:

> e’n,
Jse =—

A. (E5.8)
mc
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Figure 5.44: The geometry for calculating
the magnetic field inside a superconductor.
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‘D

Again using the result of exercise 1b, show that:

> 1= > 1 >
V2, = e and V?B= PB, (E5.9)
L L

mc?
AL = . E5.10
t \/ 4mnge? ( )

Hint: For this exercise, you can assume that 0E/0t = 0.

where 2; is defined as:

THE MEISSNER EFFECT

Meissner and Ochsenfeld observed experimentally that the magnetic field inside a
superconductor is zero. When a superconductor is placed in a magnetic field, surface
supercurrents will start to flow, completely cancelling the field inside the superconduc-
tor. In other words: a superconductor behaves like a perfect diamagnet. In this exercise,
you will calculate the magnetic field and current inside a superconductor. ~ Consider
a semi infinite superconductor, occupying the half space, z0 (see fig. [5.44). Using the
result of exercise 1d, calculate the magnetic field inside the superconductor, assuming
a constant magnetic field outside the superconductor, oriented along the x-direction.
Also calculate the current density inside the superconductor. Hint: If necessary, the
boundary conditions are B(z = 0) = B,-p and B(z = «) = 0. For the current density, keep
line 4 of equations[E5.1|in mind.

OPTICAL PROPERTIES OF SUPERCONDUCTORS

In seminar 3, you derived the Drude-Lorentz model for bound and free electrons.
Having seen how superconductivity changes the dispersions near the Fermi level, you
might anticipate that the optical properties change as well. Unfortunately, the classical
approach can’t take the truly quantum mechanical effects behind superconductivity
properly into account. A calculation of the optical conductivity in the superconducting
state is surprisingly difficult and can only be done analytically using severe approxi-
mations. In fact, the correct description requires numerical calculation of a bunch of
complicated integrals.

In this last exercise, we will calculate some optical properties of superconductors
based on the London equations.

A Start with the result of exercise 1a and calculate the corresponding optical conductivity.

‘B

‘D

Discuss the result in comparison to the Drude model. What form do 04 (w) and 0>(w)
take?

In this exercise, we will derive the photon wave equation inside a superconductor.
Show that from line 3 of equations[E5.1} it follows that:

> 2 E E >

Gpo LOE dmooE 1z (E5.11)
oz 2o A

Hint: Use equation and the result of 1a at some point. Remember that for normal

metals, j = oF, but not for superconductors.

Now that we have the wave equation, we can calculate the photon dispersion relation.
Use equation |E5.11|to find the photon dispersion relation. Hint: You can use a plane
wave as ansatz for the solution to the wave equation.

Plot the resulting dispersion for the case that 1/22 > o0y (this is the same as saying
ns > n,) and contrast it with the case of photons in vacuum. What is the ‘mass’ of the
photon? Hint: in this regime, you can just put o = 0.

PS: The London penetration depth is about 10 nanometers. This results in a photon
mass mpy, ~ 1076 kg. ..
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