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PREFACE



From the hydrogen atom to the many body problem.

SO, you have learned how to solve the quantummechanical problem of a particle
in a box. Depending on your interests you may have even learned how to solve

atomic problems, such as the simple hydrogen atom. If you have struggled through the
math for these ‘simple’ problems, you are probably aware that working with (mathe-
matical expressions of ) wave functions is often not very convenient. The mathematical
complexity of these simple problems and the ingenuity that goes into solving them is
quite formidable.

The problem to be discussed during this course is relatively simple to define: solve
the Schrödinger equation for a bunch of electrons and nuclei that obey the following
Hamiltonian:

H = − ħ2

2me

∑

j

∇2
j −

∑

p
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2Mp

∇2
p + 1

2
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j
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−
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∑
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Zpe
2
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p

∑

q≠p

ZpZqe
2

Rpq

where sums over j and k run over all the electrons in the system and the sums over p
and q over all nuclei. This Hamiltonian appears quite impressive, but if you restrict
the sums to one electron and one nucleus it is just the hydrogen atom Hamiltonian.
For two protons and two electrons it is already getting complicated and you’ll have
to resort to some approximations to actually solve the problem. Nevertheless, you
can show that this can be done with sufficient accuracy that we can actually predict
properties of molecular Hydrogen. Now imagine doing this for a ‘simple’ solid1. For
the simplest of solids the sums run over N nuclei and NZ electrons, where N is of the
order 1021 cm−3 (and Z is the atomic number). For the more mathematically inclined:
we are seeking the solution to a set of approximately 1021 coupled partial differential
equations. For the less mathematically inclined: the mathematicians have shown
that this problem can be classified as ‘NP-hard’ (non-polynomial hard), which means
that it can’t be solved (even numerically) in a reasonably finite amount of time. The
problem of solving the Schrödinger equation with the above Hamiltonian is known as
the (quantum) ‘many-body problem’ and is the most actively researched subfield of
physics of all time.

The first goal of this course is to show you how this problem can be approximately
solved. I will show you that in ‘simple’ solids the approximation is in fact quite good and
allows us to predict the behavior of such solids. I will explain how these approximations
can be improved to achieve almost perfect agreement, even for slightly more complex
solids. At the end of the course you will be able to appreciate that the Hamiltonian
written down above gives rise to solids that behave as metals or insulators, but also to
magnets and superconductors.

The second goal of this course is to show you how the approximate solutions2 to
the many-body problem can be used to calculate or explain the properties of solids as
they are observed in simple daily experiments. For example, I expect you to be able to
explain why silicon-dioxide (a.k.a glass) is transparent and copper is not.

The third and final goal of this course is to get you excited about, and interested in,
the largest field of physics: condensed matter physics.

About these lecture notes
First and for all: I am greatly indebted to Tobias Bouma without whom these notes
would have looked a whole lot different (most likely sloppily hand written, possibly
coffee stained.). These lecture notes are however still a work in progress. If you find
mistakes or have suggestions for improvement: please make an effort to bring it to
my attention. Students to come will thank you! These notes are based on the great
works of much more experienced teachers than I am. In setting up this course I have
occasionally borrowed derivations or followed a certain approach to solve a problem
based on their work. The books on which this is based are much more extensive and
therefore great material for further study:

• Introduction to solid state physics, Charles Kittel.

• Solid state physics, Neil Ashcroft & David Mermin.

• Solid-state physics, Harald Ibach & Hans Luth.

• Solid state theory, Walter Harrison.

• The physics of solids, Eleftherios Economou.

1 ‘Simple’ refers here to solids for which we
can make semi-accurate theoretical predic-
tions. An example is copper. A slightly
more ‘complex’ solid is iron. The difficulty
with iron is to predict the critical temper-
ature below which it becomes magnetic.
Then there are complex solids, such as
YBa2Cu3O7−� with properties for which
we have no theory yet.

2 That’s right, there is not a single ‘right’
solution. There are many known solutions
and the correct physical solution depends
on the question you want answered.
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THE ELECTRONIC STRUCTURE OF SOLIDS
The tight binding approximation

KEYPOINTS:
® Many problems in condensed matter physics can be re-

duced to a two level problem.

® Bloch’s theorem states that the electron wave functions
will have the same periodicity as the crystal lattice.

® Wavefunctions in solids are characterized by the quantum
number k (the band momentum), and the electron spin.



1.1 Introduction

THe theory of quantum mechanics tells us that the evolution of a quantum mechan-
ical system is governed by the time dependent Schrödinger equation,

iħ
d Ψ(x, t)
dt

= H Ψ(x, t) (1.1)

where H is the Hamiltonian consisting of a potential and kinetic term. There are two
important observations to make here. The first observation is that we can separate out
the time dependence if the potential does not depend on time. In that case we can simplify
the problem to solving the time independent Schrödinger equation,

Hψ(x) = Eψ(x) (1.2)

The full solution to equation 1.1 is then obtained by multiplying the time independent
solution, ψ(x), with

φ(t) = e−iEt/ħ (1.3)

In this course (and in most of solid state physics) we will be concerned with time
independent potentials 3 and hence we need only ever worry about Eq. 1.2.

The second observation is a bit more mundane: I have written the wavefunction
with the argument x. For the remainder of these notes I will use this label to indicate
anything ranging from the 1 dimensional variable ‘x’ to a set of N variables describing
the positions and spins of N particles (i.e. x ≡ {r1, σ1, r2, σ2, ..., rN, σN}) where N can be
a large number. Where necessary I will specify the exact meaning, but it is such an
easy (and widely used) short hand that I could not resist the temptation.

Similarly, very often (but not always) I will use units in which ħ ≡ 1 or c ≡ 1
or possibly both at the same time. I will therefore occasionally (most likely during
lectures) run into problems with units. In these cases it helps to remind oneself that 1
electronVolt = 11604 Kelvin = 8065.14 cm−1. These are probably the three most useful
numbers any physicist should remember. You use themwhenever youwant to compare
or convert an energy scale (typically measured in eV) to a temperature scale (typically
measured in Kelvin) or a length scale (not typically measured in wavenumber k = 2π/λ,
so you’ll have to make one further mental step).

With these preliminaries in mind it is time to introduce the Hamiltonian of a solid.
Just to be completely clear, for a given solid Eq. 1.2 reads,

Hψ({r1; r2; ...; rN}; {R1; R2; ...; RM}) = Eψ({r1; r2; ...; rN}; {R1; R2; ...; RM}) (1.4)

withH depending on the conjugate particle operators {r1; ...; rN}, {R1; ...; RM}, {p1; ...; pN}
and {P1; ...; PM}. As usual, the Hamiltonian contains two parts: a kinetic term and a
potential term, H ≡ K + V. The kinetic term is the simplest. As you should remember
from previous courses the operator p ≡ −iħ∂/∂x can be used to define the kinetic energy.
The total kinetic energy is simply the expectation value of the sum over the kinetic
energy of all particles. So we need the kinetic energy operator for N atoms:

K = − ħ2

2me

∑

i

∇2
i −

∑

P

ħ2

2MP

∇2
P (1.5)

For reasons that will become apparent, I have already split the sum into two parts.
The first term (with lowercase indices) describes the kinetic energy of ZPNP electrons,
while the second term (uppercase indices) describes the kinetic energy of the nuclei. If
we consider just the kinetic energy, it is in fact quite easy to solve Eq. 1.2. Since each of
the terms in Eq. 1.5 depend on the operators of only one particle, we can separate the
wavefunction into a product of wavefunctions that depend on only one set of particle
coordinates:

ψ({r1; ...; rN}; {R1; ...; RM}) = φ(r1)φ(r2)...Φ(RN); (1.6)

The single particle wavefunction φ is the solution of the eigenvalue problem,

− ħ2

2m
∇2φ(r) = Eφ(r) (1.7)

which is easy to solve (see Exercises).
The potential energy term is slightly more complicated. As youmight have expected

the Coulomb interaction is the main contributor4. So without further ado the
operator describing the potential energy is (r jk is shorthand for |r j − rk|):

V = 1
2

∑

j

∑

k≠ j

e2

r jk
−
∑

j

∑

P

ZPe
2

|r j − RP|
+ 1
2

∑

P

∑

Q≠P

ZPZQe
2

RPQ
(1.8)

Show that..

Ψ(x, t) ≡ ψ(x)φ(t) is indeed a solu-
tion of Eq. 1.1.

3 The only case where we will encounter
a sort of time dependent potential is
in the last chapter on superconductivity.
Strangely, the time dependence we will
discuss there emerges from Eq. 1.2.

4 Other terms can be included ( for example
the spin-orbit interaction), but these are
much weaker compared to the Coulomb
interaction and can be taken care of in a
perturbative approach.
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As before, the indices indicate whether the sum runs over electrons or nuclei. One
difficulty here is that we should make sure that we don’t double-count the interactions
(which is why there is a factor 1/2 in front of the first and last term) and that a particle
can’t interact with itself (hence the restriction k ≠ j on the sum). A more major
difficulty is the fact that the Coulomb interaction ‘couples’ the particle coordinates
together. The upshot is that the nice factorization into single particle problems leading
to Eq. 1.6 is no longer possible. We now need to find a solution for all N particles
simultaneously. This problem is known as the many-body problem. In principle it
is possible to solve such a problem numerically, but unfortunately the Hilbert space
for this problem grows exponentially with the number of particles. Practically this
means that it is possible to simulate problems with up to about 100 particles in a
reasonable amount of time, which is a long cry from the near infinity of particles in a
real solid. As we will see in the remainder of this chapter, it is possible to approximate
this complicated problem with an effective single particle problem. For those readers
interested in the many-body problem dedicated texts are recommended5.

To set the stage before solving any realistic problems, we will have a look at the
simplest possible multi particle problem. This simple problem will demonstrate a few
principles that underly approximations made in the many-body problem.

1.2 The hydrogen molecule
As a first step towards the approximate solution, we will sketch the steps to solve a
simplified version of the hydrogen molecule problem (figure 1.1). We consider two
hydrogen atoms, for which we already know the solutions (i.e. the orbitals φnlm(r) =
Rnl(r)Yml (θ, φ) with eigenenergies En = −ħ2/2ma20n2). We ignore all orbitals except for
the 1s-orbital and denote it in bra-ket notation as |i⟩. This allows us to write down the
Schrödinger equation for an isolated hydrogen atom as:

Hi |i⟩ = εi |i⟩ (1.9)

With these preliminaries in place we can now write down the hydrogen molecule
problem. The Schrödinger equation will be of the form

H |ψ(1; 2)⟩ = (H1 +H2 +H1,2) |ψ(1; 2)⟩ = E |ψ(1; 2)⟩ (1.10)

TheHamiltonian will contain three parts: an ‘independent’ part referring to the kinetic
and potential energy of the electron on hydrogen atom 1 and one on hydrogen atom
2. Of course, if we bring the two atoms close enough together the orbitals on the
individual atoms will start to overlap and we will get an additional term resulting from
the interactions between the two electrons and nuclei. If we imagine this to happen as
a more or less adiabatic process, the wave function of the hydrogen molecule will be a
linear superposition,

|ψ(1; 2)⟩ = c1 |1⟩ + c2 |2⟩ (1.11)

of the original hydrogen 1s-orbitals. The coefficients c1,2 are to be determined by
finding the solution to Eq. 1.10, with

H = |1⟩ ε1 ⟨1| + |2⟩ ε2 ⟨2| − |2⟩ t ⟨1| − |1⟩ t* ⟨2| (1.12)

The first two terms in the hydrogen molecule Hamiltonian represent the (ground-
state) energy of the atomic orbitals of atom 1 and 2, while the last two terms represent
the interaction energy (parametrized by t) resulting from the interaction between the
two atoms. To find the coefficients c1,2 and the new eigenenergies of the hydrogen
molecule we need to solve the following two level problem6[

ε −t
−t ε

] [
c1
c2

]
= E
[
c1
c2

]
(1.13)

As usual we obtain the new eigen energies by diagonalizing the 2 × 2-matrix7. This
gives,

E± = ε ± t (1.14)

with the corresponding eigenfunctions

|−⟩ = 1√
2
(
|1⟩ + |2⟩

)
(1.15)

and
|+⟩ = 1√

2
(
|1⟩ − |2⟩

)
(1.16)

7

5 The Many-body problem, Advanced
Book Classics.

Figure 1.1: We consider the hydrogen
molecule as consisting of two hydrogen
atoms, each with a single 1s orbital.

Show that..

the combination of Eq. 1.10, 1.11
and 1.12 leads to Eq. 1.13

6 Because the hydrogen atoms are identical
we take ε1 = ε2. Furthermore we assume
t to be a real number.

7 Remember that this is done most easily
by setting the determinant of the matrix
equation equal to zero and solve for the
eigenenergies.



The resulting energy diagram of the hydrogen molecule is depicted in figure 1.2
together with the original atomic energy levels. Within a few steps and without too
much effort we have solved a quite complicated 4 particle problem. How did we achieve
this? There are a few hidden ingredients leading to a tremendous simplification. First
of all, we have ignored the excited states of the hydrogen atom(s). It turns out that as
long as we are interested in the ground state properties of the hydrogen molecule and
not its excited states this is in fact a very reasonable approximation. This approximation
means in practice that we have reduced a large Hilbert space to a very simple one.
Another way of saying this is that we have assumed that the Hilbert space is spanned by
a complete, orthonormal set of states (i.e. |1⟩ ⟨1| + |2⟩ ⟨2| = 1). This approximation is
reasonable as long as the interaction between the two hydrogen atoms can be assumed
to be a perturbation (i.e. |t| << |ε|). Under this approximation the new eigenfunctions
are linear superpositions of the original states and the problem is relatively straight
forward to solve. The energy diagram in Fig. 1.2 shows that the new groundstate (|−⟩)
is lower in energy than the original atomic eigenfunction. At the same time a second
state (|+⟩) is formed that has a higher energy and is thus an excited state. Each of these
states can harbor 2 electrons (one with spin up and one with spin down). The lowest
energy is obtained when the two electrons of the hydrogen atoms both occupy the |−⟩
state, resulting in an energy gain of 2t for the formation of a hydrogen molecule. For
this reason |−⟩ is called a bonding state. The state |+⟩ has a higher energy relative to
the original atomic orbitals and is therefore called an anti-bonding state.

Part of the reason for introducing this very simplified picture of the hydrogen atom
is that the ‘standard model’ of the electronic structure of solids proceeds much along
the same lines. The eigenstates describing solids are in general linear superpositions,

|ψG(r1; ...; rN)⟩ = 1√
N!

∣∣∣∣∣∣∣∣∣
χ1(r1) χ2(r1) · · · χN(r1)
χ1(r2) χ2(r2) · · · χN(r2)

...
...

. . .
...

χ1(rN) χ2(rN) · · · χN(rN)

∣∣∣∣∣∣∣∣∣ (1.17)

of a suitably chosen set of basis states χi. As we shall see, we can very often reduce a
problem involvingN interacting particles to a set of independenttwo-level problems. It
is important to keep in mind that describing solids by linear combinations of (atomic)
eigenstates is an approximation.

1.3 Crystal structures

One of the key concepts in condensedmatter physics is that of a periodic lattice of atoms.
Interestingly, the concept was introduced well before it was possible to experimentally
demonstrate the existence of atoms let alone their periodic arrangement in crystals. It
turns out that crystal structures come with a limited diversity. The number of possible
lattice systems is determined by symmetry and dimensionality. In one space dimension
there exists only one type of lattice (fig. 1.3a). There are five possible lattices in two
dimensional space, two of which are depicted in fig. 1.3b and 1.3c. The remaining
lattices are obtained from these two by simple deformations of these lattices. The
number of possible lattices grows quickly with the number of space dimensions: in
three space dimensions there are 14 possibilities, while there are 52 lattices possible in
four space dimensions. Fortunately, it is not at all necessary to know these structures
by heart to understand the basic concepts of condensed matter systems.

During most of the course we will only consider three particular lattices: the 1D
linear chain, the 2D square lattice and the 3D cubic lattice. This does not mean
that crystal symmetry plays no role in condensed matter physics. It is the crucial
concept necessary to understand the origin of the differences between materials. For
example, diamonds and soot are both made of carbon atoms. The huge difference in
appearance and properties (beautifully transparant and insulating vs. pure blackness
and highly conducting) finds its origin in a small difference in the periodic arrangement
of the carbon atoms dictated by a different lattice symmetry (face centered cubic vs
hexagonal). For what follows you need to remember two main concepts: (i) atoms are
arranged according to a periodic pattern and (ii) they are separated by lattice vectors a.
In the simplest case the periodicity is the same in all independent spatial directions (e.g.
isotropic). If you are completely unfamiliar with the concept of crystal structures you
are advised to look up relevant literature8. Note that lattice site is not an equivalent
word for atom. Each lattice site can in fact contain multiple atoms. One therefore
more often speaks of unit cells rather than lattice sites. Each unit cell then contains a
number of atoms.

Figure 1.2: The solutions of the hydrogen
molecule and their energies relative to the
original atomic orbitals.

Figure 1.3: Most used lattices during the
course. (a): the only one dimensional peri-
odic arrangement of atoms, the linear chain.
Also indicated is the lattice vector a. (b,c):
the two dimensional square and hexagonal
lattice are the most important 2D lattices.

8 , Introduction to solid state physics,
Wiley, Wikipedia, Crystal structure.
[Online]. Available: https : / / en .
wikipedia . org / wiki / Crystal _
structure .
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Strena seu de Nive Sexangula

Johannes Kepler is probably best known for his work in astronomy, especially his
laws on the motion of planets. He is however better described as a mathematician.
He deserves a mention at this point for a major contribution to condensed matter
physics before the field even existed (or perhaps he should be credited for starting
it). In 1611 he wrote the treatise ‘A New Year’s Gift of Hexagonal Snow’ for a
friend in which he hypothesized for the first time that the hexagonal symmetry
of water crystals arose from the hexagonal arrangement of water particles. He
went on to conjecture that a hexagonal arrangement of spheres would result in the densest possible packing of
space. The formal proof for this conjecture was delivered by a team led by Thomas Hales in 2014 (!). Image credits:
https://en.wikipedia.org/wiki/Johannes_Kepler

1.4 From the many-body problem towards single particle solutions

To make progress in the description of the electronic properties of solids it is necessary
to simplify Eq. 1.4 along the same lines as was done for the hydrogen molecule. Lets
have a closer look at the Hamiltonian,

H = − ħ2

2me

∑

i

∇2
i −

∑

p

ħ2

2Mp

∇2
p +Uee(rik) +Uei(ri, Rp) +Uii(Rpq) (1.18)

A first simplification can be made if we apply the Born-Oppenheimer approximation9.
As we will see later the movement of the ions is in fact crucial to understand some of
the most astonishing aspects of solids, but to zeroth order we ignore them. Under this
approximation the Hamiltonian thus reads:

H = − ħ2

2me

∑

i

∇2
i +Uee(rik) +Uei(ri, Rp) (1.19)

The first term in the sum refers to the kinetic energy of the electrons, the second term
to the Coulomb repulsion between the electrons and the last term to the interaction
between the electrons and the nuclei. This last term can be assumed to be a static
potential in which the electronsmove, since we have assumed that themovement of the
nuclei can be neglected. The remaining difficulty is now in the term Uee(rik). In this
chapter we will approximate it by a kind of ‘mean-field approximation’: we replace
this complicated many-body interaction by an effective potential landscape through
which each electron moves. The justification for this is unfortunately beyond the scope
of this book. I hope you will appreciate the fact that within this approximation we
will be able to solve problems and obtain solutions that can be verified in a laboratory.
In essence, what we have achieved by applying successive approximations is that the
complicated, dynamic potential landscape through which both the electrons and ions
move is replaced by a single, static potential landscape as indicated in by the solid lines
in Fig. 1.4. This potential landscape is called the (effective) lattice potential, Ulat and
it allows us to reduce the Hamiltonian to,

H = − ħ2

2me

∑

i

∇2
i +Ulat(ri) (1.20)

This is a tremendous simplification: we are now left with a set of independent single
particle problems to solve. Note that we haven’t actually solved or changed anything
yet. All we have done so far is to replace the complicated sum of potentials with a
single effective one. Also note that we do not a priori know the shape of the lattice
potential, Ulat(r). Without a shape for this lattice potential we will never get any closer
to a working theory that explains the differences between solids10. Fortunately, we
only really need to know the symmetries of the crystal structure and the original
atomic wavefunctions to get a good description of the electronic structure. The atomic
wavefunctions are more easily calculated, while in many cases of interest somebody,
somewhere has done the necessary x-ray diffraction experiments to determine the
crystal symmetries and the crystal structure. With the crystal symmetries and structure
in hand we have enough information to solve the single particle problem for a given
solid. To conclude this section, we note that we now have to solve the following
Schrödinger equation: [

− ħ2

2me
∇2 +U(r)

]
ψ(r) = εψ(r) (1.21)

9

9 The Born-Oppenheimer approximation as
applied to molecules or atomsassumes that
the motion of electrons and nuclei can be
treated separately. It is generally validated
by arguing that the ion mass, Mp is much
larger than the electron mass me.

Figure 1.4: The effective lattice potential is
indicated in black. It consists of overlapping
atomic potentials (indicated in gray) and an
effective mean-field potential generated by
all other electrons.

10 There is one exception, in the (nearly) free
electron model the lattice potential is as-
sumed to be almost completely flat and fea-
tureless. Remarkably this oversimplified
model actually gives a good understanding
of many properties of metals.

https://en.wikipedia.org/wiki/Johannes_Kepler


where we have introduced the shorthand U(r) for the lattice potential. I hope you
recognize this as the Schrödinger equation of a particle in a box and that in principle
you should be able to solve such problems, provided the potential U(r) is simple
enough. To solve this for the case where U(r) is a complicated periodic function we
need to make use of an important theorem.

1.5 Bloch’s theorem
The essence of Bloch’s theorem is very simple. It states:

The single particle wave function of electrons in solids can be expressed in terms of a ba-

sis of wavefunctions and has the same periodicity and symmetry as the crystal.

Despite its simplicity, it is one of the cornerstones of condensed matter physics and
leads to a very powerful description of electrons in solids. To prove Bloch’s theorem,
we start by casting the periodicity imposed by the crystal structure and symmetry in
mathematical form. This is done simply by choosing a lattice potential with the same
symmetries as the crystal.

U(r) = U(r + R) (1.22)

where R = na with n some integer and a is the set of shortest vectors connecting two
lattice sites (see Fig. 1.4 for examples). We now note that based on Eq. 1.21 we have[

− ħ2

2me
∇2 +U(r + R)

]
ψ(r + R) = εψ(r + R) (1.23)

which can be rewritten as (using Eq. 1.22),[
− ħ2

2me
∇2 +U(r)

]
ψ(r + R) = εψ(r + R) (1.24)

But this is just the Schrödinger equation for the wave function ψ(r), so:

ψ(r + R) = c(R)ψ(r) (1.25)

Since we must have |c(R)|2 = 1 and c(R′ + R) = c(R′)c(R) it follows that the function
c(R) ≡ exp(ik · R), such that

ψ(r + R) = eik·Rψ(r) (1.26)
Eq. 1.26 is a statement of Bloch’s theorem, which allows us to cast the problem onto a
‘basis’ of wavefunctions. To do this, we recast Eq. 1.26 in the following form,

ψk(r) = eik·ruk(r) (1.27)

where k is the electron wavevector (such that p = ħk). It is easy to see that this
wavefunction has the same periodicity as the crystal if we require that,

uk(r) = uk(r + R) (1.28)

By combining Eq. 1.27 with the Schrödinger equation, we obtain the following differ-
ential equation that the uk(r) should obey:[

− ħ2

2me

(
∇ + ik

)2
+U(r)

]
uk(r) = εkuk(r) (1.29)

Since the lattice potential is assumed to be periodic, we should be able to expand it in
a Fourier series,

U(r) =
∑

G

UGe
iG·r (1.30)

From this Fourier series it is easy to show that the vectors G have to be chosen with
care. Since,

U(r + R) =
∑

G

UGe
iG·
(
r+R
)

= eiG·RU(r), (1.31)

we must have,
G · R = 2nπ. (1.32)

such that indeed U(r + R) = U(r). For a given set of lattice vectors the above relation
defines the set ‘reciprocal lattice’ vectors. For the specific case of a three dimensional
crystal we have,

R = la1 +ma2 + na3 (1.33)

Show that..

|c(R)|2 = 1 and c(R′ + R) = c(R′)c(R)
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and
G = pb1 + qb2 + rb3 (1.34)

A little linear algebra shows that for G to satisfy Eq. 1.32, the bi should satisfy,

bi =
2π
(
a j × ak

)
Vcell

(1.35)

Note that the vectors bi have the dimension of inverse length, just like the electron
momentum (since k = 2π/λ). Therefore Eq. 1.34 combined with Eq. 1.35 defines a
lattice similar to Eq. 1.33, but with dimension of inverse length (or with dimension of
momentum!). For this reason it is called the reciprocal (or inverse) lattice. This has
a crucial implication: not only is the wave function periodic in real space, it is also
periodic in momentum space. As you can see from the definition of the reciprocal
lattice vectors (Eq. 1.35), they are uniquely determined by and different for each set of
real space vectors. The reciprocal lattices corresponding to the simple lattices depicted
in Fig. 1.3b,c are also square and hexagonal lattices respectively. For more complicated
real space lattices, complicated reciprocal lattices can, of course, be constructed. The
power of these statements will (hopefully) become clear in the next section.

1.6 The tight-binding problem
We can use Bloch’s theorem to recast the problem defined by Eq. 1.21. For a general
form of the lattice potential this is still a complicated problem, since the number of
terms that we need to retain in its Fourier expansion (Eq. 1.30) can become quite large.
The problem is typically solved in two opposing limits. The weak potential limit 11

is typically used to describe metals. We will here not spend too much time on this
problem and instead leave it as an exercise. This situation is also known as the (nearly)
free electron model and has been discussed extensively during the course ‘GM1’. The
formal derivation is not all that complicated and since it follows roughly the same steps
as the derivation in the opposite limit (to be discussed here) we leave it as an exercise
to the reader (see Exercise 2). The second limit is known as the ‘atomic’ potential
limit or tight-binding limit. In this limit we assume that we can replace the crystal
potential by regularly spaced atomic potentials. This implies that the solutions (e.g.
the wavefunctions) in fact closely resemble the atomic wavefunctions. By comparing
the atomic potential with the approximate crystal potential (Fig. 1.4) we expect this
to work well for materials consisting of atoms where the highest occupied orbitals are
s− and p−wave orbitals (for example silicon or carbon allotropes etc.).

Before continuing, let us remind ourselves of the atomic problem. TheHamiltonian
is simply:

Hat = − ħ2

2m
∇2 +Uat(r) (1.36)

where r refers to the electron coordinates. The Schrödinger equation is,

Hatψn(r) = Enψn(r) (1.37)

which has solutions ψ1s,ψ2s,ψ2p, ... with corresponding eigenenergies. Now, referring
to Fig. 1.4 and Eq. 1.21, suppose we would write our Hamiltonian in the following
way:

H = − ħ2

2m
∇2 +Ue f f (r)

= − ħ2

2m
∇2 +Uat(r) +

∑

R≠0

Uat(r − R)
(1.38)

where R is a vector of the real space lattice. We now notice that the first two terms in
the second line exactly correspond to the atomic Hamiltonian, Eq. 1.36. We can now
use the solution to the atomic problem to rewrite the Schrödinger equation for an
electron moving through the crystal potential. Let’s act with the full Hamiltonian on
an atomic orbital ψn(r). We find,

Hψn(r) = Hatψn(r) + ∆U(r − R)ψn(r)

= Enψn(r) + ∆U(r − R)ψn(r)

Where we have introduced the term ∆U(r − R), representing the modification of the
potential at position r due to the nuclei at positions R. If this term equaled zero, the
problem would in fact be solved (as we would trivially have the atomic problem).

11
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with the given choice for the recip-
rocal lattice vectors G indeed satis-
fies Eq. 1.32

11 In this limit the lattice potential is replaced
by a very weakly modulated potential.
This situation describes electrons moving
through the lattice in energy states close to
the top of the lattice potential depicted in
Fig. 1.4.



Now imagine what happens if we slowly turn on the lattice potential arising from all
the other nuclei. If this is done sufficiently slowly (adiabatically), the eigenfunctions
shouldn’t change all that much. However, as the last term on the 2nd line shows, the
ψn(r) are no longer the correct eigenfunctions of the Hamiltonian. To proceed we
make an ansatz about the structure of the wavefunction. If we were trying to solve an
atomic problem (for example, including spin-orbit interaction), a reasonable ansatz
would be a linear superposition of the atomic orbitals

φ(r) =
∑

n

bnψ
at
n (r) (1.39)

However, this wavefunction does not satisfy Bloch’s theorem. Since we know that
∆U(r − R) will introduce the lattice periodicity, we take as the ansatz,

ψk(r) =
∑

R,n
bnψ

at
n (r − R)eik·R (1.40)

Note that this wavefunction is exactly equivalent to Eq. 1.27 if we identify the uk(r) with
the linear superposition Eq. 1.39. Note that we have expressed our lattice wavefunction
in a basis of wavefunctions (the atomic orbitals).

All we need to do next is find the coefficients bn and the modified eigenvalues.
These will of course depend on the shape we choose for ∆U(r − R). Unfortunately,
nobody knows what ∆U(r − R) looks like. Moreover, it will be different for each and
every crystal: the precise potential at a given lattice site will depend on the atomic
species of its neighbors, the number of neighbors, the atomic species of the neighbor’s
neighbors and so on. The aim of the coming page(s) is to solve the problem as far as
we can without making any assumption about the actual form of ∆U(r − R). There is
one important point that should be stressed: if we would know the exact shape of
∆U(r − R), the final result would be the exact solution of the single particle problem.
So far, we have made no approximations (we only actually enforce the tight binding
limit if we make assumptions about ∆U(r − R)).
The first step is to define the problem. The Schrödinger equation reads

Hψk(r) = Ekψk(r) (1.41)

The left-hand side can be rewritten, using our ansatz wavefunction, as:

Hψk(r) =
∑

R,n
eik·Rbn

[
Hat + ∆U(r − R)

]
ψn(r − R) (1.42)

Making use of Eq. 1.37, we can replace Hat by the atomic eigenvalues. The Schrödinger
equation then reads:

∑

R,n
eik·RbnEnψn(r − R) +

∑

R,n
eik·Rbn∆U(r − R)ψn(r − R) = Ek

∑

R,n
eik·Rbnψn(r − R) (1.43)

Now we make use of a little trick; we multiply both sides by ψ*
m and integrate,

∑

R,n
eik·RbnEn

∫
drψ*

m(r)ψn(r − R) +
∑

R,n
eik·Rbn

∫
drψ*

m(r)∆U(r − R)ψn(r − R)

= Ek
∑

R,n
eik·Rbn

∫
drψ*

m(r)ψn(r − R)
(1.44)

Lets take a closer look at the first term. We can separate it into a term where R = 0
and a sum for R ≠ 0,
∑

R,n
eik·RbnEn

∫
drψ*

m(r)ψn(r −R) =
∑

n

bnEn

∫
drψ*

m(r)ψn(r) +
∑

R≠0,n
eik·RbnEn

∫
drψ*

m(r)ψn(r −R)

(1.45)
The first term can be rewritten by making use of the completeness relation for the
atomic orbitals, ∫

drψ*
m(r)ψn(r) = �m,n (1.46)

By summing over all atomic orbitals we pick out the orbital m. Therefore,

∑

R,n
eik·RbnEn

∫
drψ*

m(r)ψn(r − R) = bmEm +
∑

R≠0,n
eik·RbnEn

∫
drψ*

m(r)ψn(r − R) (1.47)
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we can further simplify this expression by introducing the definition,

αm,n(R) ≡
∫
drψ*

m(r)ψn(r − R) (1.48)

The term appearing on the right-hand side of Eq. 1.44 can be treated similarly. For the
second term on the left-hand side of Eq. 1.44 we introduce two terms:

βm,n ≡
∫
drψ*

m(r)∆U(r)ψn(r) (1.49)

and
γm,n(R) ≡

∫
drψ*

m(r)∆U(r − R)ψn(r − R) (1.50)

By reorganizing some terms we now have:

(Ek − Em) bm =
∑

n

bn

[
βm,n − (Ek − En)

∑

R≠0
eik·Rαm,n(R) +

∑

R≠0
eik·Rγm,n(R)

]
(1.51)

This is the most important result of this chapter. With this expression you will be
able to derive the electronic dispersion, a.k.a. the band structure, for a given crystal
structure and a given set of integrals αm,n, βm,n and γm,n. Throughout this course I will
refer to this expression as the central equation. Note that the difficulty of solving
the Schrödinger equation is still not solved, but is now hidden in the set of integrals
and orbitals. Lets consider the (rough) meaning of the integrals first. In fact, the
only integral that we have any real feeling for is αm,n(R). This integral is called the
overlap integral. If the atomic problem is solved accurately this integral is easily
calculated with similar accuracy. In most cases this integral is typically small compared
to the other terms appearing in the central equation and is therefore often ignored12.
The other two integrals involve the lattice potential and are strongly dependent on
the crystal structure (coordination number, symmetry etc.) and the flavors of atoms
involved. There are empirical formulas for these integrals that can be used in simple
cases (e.g. to understand the band structure of silicon), but personally I find this rather
uninteresting. As far as this course is concerned both integrals provide a number and
we can obtain this number by matching calculated band structures to measured ones.
Despite the difficulty of obtaining accurate values for these integrals we can understand
their origin. If we look at the structure of Eq. 1.49 we see that it involves the atomic
orbitals on site r as well as ∆U(r) only. The latter is the deviation of the local potential
from the atomic potential. As figure 1.4 demonstrates, this deviation is pretty small,
so to first order this doesn’t really affect the wavefunctions. As we will see in the next
section and in the exercises, this term is mainly responsible for a shift in the energy
of a given orbital. The last integral (Eq. 1.50) is the most complicated to interpret.
It involves wavefunctions on different sites, just like the αm,n, but it also involves the
lattice potential. This integral is known as the hopping integral: if finite this term is
responsible for coupling different lattice sites and making it energetically favorable for
electrons to delocalize13. In the next section I will describe a simple method to use
the central equation to solve a given tight-binding problem followed by the simplest
possible example. To close this section I would like to stress that tight-binding theory
is a phenomenological approach: its accuracy depends on the accuracy with which the
three integrals are determined and we have no way to test this accuracy. The power of
the method lies in the fact that it gives a clear insight in the origin of measured band
structures and it allows one to easily parameterize the electronic structure for more
complicated calculations (for example, in the calculation of the optical response of
solids).

1.7 The central equation and a simple example
In this section we will look at a simple scheme that can be used together with the
central equation to solve for the electronic structure of solids. Note that the method
is completely general and in principle exact: if the three integrals would be known
exactly, the resulting band structure would be the exact solution to the single particle
Schrödinger equation for an electron moving through a complicated lattice potential
landscape. In general, we will not be interested in the electron wavefunctions in the
solid itself. We therefore do not have to solve for the coefficients bn. We will only be
interested in the eigenvalues, the ‘Ek’. Note that for each electron momentum k we
will have an independent solution. To solve a tight binding problem using the central
equation we will always follow the following steps:

13
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Eq. 1.51 can be obtained from Eq
1.44

12 Please don’t take this to mean that it is
always negligible. It is typically an impor-
tant factor when d-orbitals are involved.

13 The overlap integral also couples different
sites, but does not lead to a net gain in
energy.



• Determine how many orbitals per lattice site should be included.

• Write down the relation between coefficient bm and all other coefficients bn.

• This requires writing down N equations for N unknown coefficients. It is therefore
possible to eliminate the coefficients all together.

• From the resulting equation solve for Ek in terms of the three integrals αm,n, βm,n
and γm,n.

• To continue you needmore information about the crystal structure and the relative
importance of the integrals. The crystal structure defines the set of vectors R
required to work out the sums over R, while the relative importance of the integrals
will be given for a given exercise discussed during the course.

• The last step is to simplify the exponentials appearing in Eq. 1.51.

To illustrate how this works in practice we will now consider the simplest possible
problem: a linear chain of hydrogen atoms. This example allows me to illustrate all
the necessary tricks and also gives some insight into the physics of solids and their
electronic structure. Since it describes a linear chain of hydrogen atoms it is however
pretty much useless from a practical point of view (since these do not exist in nature to
the best of my knowledge). The difficulty of solving a tight binding problem depends
strongly on how many atomic orbitals we keep in the calculation. To know how many
atomic orbitals we need to keep in order to describe a realistic problem with some
accuracy requires some experience. For the hydrogen chain we will keep just the 1s
orbital. This is a reasonable approximation if we are interested in the low energy
properties. In the atomic problem, the 1s and 2s orbitals are separated by several
electronVolt (eV). This will not change drastically when we consider the chain and
therefore to very good approximation we need just the 1s orbital14.

The labels m, n appearing in the sums in Eq. 1.51 are encoding for the different
orbitals. We could introduce the notation n = 1 → 1s-orbital, n = 2 → 2s-orbital, but
personally I find itmuchmore convenient to just let the sum run overm, n = 1s, 2s, 2p....
With just the 1s-orbital as the basis we have from Eq. 1.5115

(Ek − E1s)b1s = b1s

[
β1s,1s − (Ek − E1s)

∑

R≠0
eik·Rα1s,1s(R) +

∑

R≠0
eik·Rγ1s,1s(R)

]
(1.52)

We have in this case (N = 1) a single equation depending on a single coefficient (b1s)
and we can trivially eliminate it and solve for Ek (for convenience we drop one 1s label
on the integrals):

Ek = E1s + β1s +
∑
R≠0 γ1s(R)eik·R

1 +
∑
R≠0 α1s(R)eik·R

(1.53)

Note that so far we have really made no assumption about the crystal structure. Our
only assumption has been that we need to consider 1s orbitals only. The result in Eq.
1.53 is in fact valid for an arbitrary lattice structure with arbitrary spatial dimension.
For the special case of a 1D chain of (equally spaced) hydrogen atoms the set of lattice
vectors R = na, where a is the distance betweentwo neighboring atoms and |n| = 1, 2, 3...
(note that we need to sum over positive and negative integers, or writetwo exponentials
in the sum to include neighbors on the left and on the right of a given site.). This
allows us to replace the sum over lattice sites R with a sum over atomic sites n:

Ek = E1s +
β1s +

∑
|n|≠0 γ1s(na)eikxna

1 +
∑

|n|≠0 α1s(na)eikxna
(1.54)

The next step is to determine the relative importance of the overlap integrals. Lets
consider the α1s(R) integral. Looking back to Eq. 1.48, we see that this integral is given
by the overlap between a 1s-orbital on site r and a 1s-orbital on site r + R. Given the
radial probability of the 1s-orbital (see Fig. 1.5), we expect the overlap integrals to
become increasingly smaller for atoms separated by more than one lattice site. In other
words, we only expect this integral to have any importance for nearest neighbors.
As a result we stop summing after |n| = 1 and keep just two exponentials.

∑

|n|≠0
α1s(na)eikxna = α1s(−a)e−ikxa + α1s(a)eikxa (1.55)

14 This reasoning breaks down when we con-
sider higher angular momentum orbitals.
For example, the 3d orbitals consist of 5
individual orbitals (ml=-2,...,2). In the ab-
sence of symmetry breaking terms, these
orbitals are degenerate and we ought to
keep all 5 of them.

15 To ease writing in more complicated prob-
lems this is a good point to introduce the

notation γ̃ =
∑
r e
ik·rγ(R).

Figure 1.5: Radial distribution of the proba-
bility distribution for the atomic orbitals.
a0 ≈ 0.53 Å is the Bohr radius. Image
credit: http://hyperphysics.phy-astr.
gsu.edu.
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Figure 1.6: The dispersion for a linear chain
in the 1st Brillouin zone. The zone bound-
ary is indicated by the dashed lines. Note
that the total width (bandwidth) in energy
ranges from -2γ1s to 2γ1s.

Since we are considering a simple chain with 1s-orbitals, the problem is inversion
symmetric between atoms on the left and on the right, i.e. α1s(−a) = α1s(a), and we can
combine the two exponentials into a cosine.

∑

|n|≠0
α1s(na)eikxna = α1s

[
e−ikxa + eikxa

]
= 2α1s cos(kxa) (1.56)

A similar argument can be applied (in this particular case) to the sum over the hopping
integrals γ1s(na). It can be shown16 that these integrals become smaller with increasing
distance between the lattice sites (falling off as 1/d, where d is the distance) and it
usually suffices to keep only nearest and next-nearest neighbors. For this example we
will only keep the nearest neighbor hopping integral. This again reduces the sum over
lattice sites to just two sites (±a) and we finally obtain:

Ek = E1s + β1s + 2γ1s(a) cos(kxa)
1 + 2α1s(a) cos(kxa)

(1.57)

For simplicity we further ignore the contribution of the α1s term and set it to zero:

Ek = E1s + β1s + 2γ1s(a)cos(kxa) (1.58)

This is a reasonably simple result. We find that the energy eigenvalues for the
electron wavefunctions (labelled with quantum number k) are given by the energy of
the atomic orbital, shifted by a small correction (β1s) due to the slight modification
of the atomic potential by neighboring atoms. On top of this we find that electrons
with small momentum gain energy with respect to the atomic eigen energy, while
high momentum states pay a bit of energy. This is quite similar to what happens in
molecules (see figure 1.2, imagine that the bonding state coincides roughly with the
k = 0 state here). In principle we could now continue to work out expressions for
the coefficients bm (which would be trivial in this case.), but most of the time the
dispersion relation already provides a lot of insight.

The dispersion is plotted in Fig. 1.6. There are a number of important points to
make about this simple result. As we have seen in Sec. 1.5, reciprocal space is periodic.
For a linear chain, the reciprocal lattice vector is given by 2π/a (see Eq. 1.32). Therefore
we only have to plot the dispersion in the so-called first Brillouin zone. This is also
called the reduced zone scheme. The next Brillouin zone will be an exact copy of this
Brillouin zone17. Another important quantity is the Fermi energy. The Fermi energy is
defined as the energy separating occupied electronic states from unoccupied electronic
states. To determine the Fermi energy we first need to know which states are occupied
and to this end we first need to do some simple counting of states. For the linear
chain of hydrogen atoms we have started with N 1s-orbitals, each occupied with one
electron. We had better have enough empty states to harbor all those electrons. It is
not difficult to show that, for a linear chain of length L with N lattice sites separated by
distance a, the volume per k-point is 2π/Na. Subsequently, there are N available states
in our one dimensional dispersion and thus a grand total of 2N states if we include the
spin degeneracy of each state. We started out with N hydrogen atoms, each carrying a
single electron and therefore we need to distribute N electrons over 2N available states.
The lowest energy configuration is thus achieved by occupying the bottom half of the
band. At absolute zero temperature there will be a sharp cutoff between occupied
and unoccupied states indicated in Fig. 1.6 by the Fermi energy (EF). In this example,
the Fermi energy lies in the band. This implies that there are empty states just above
and occupied states just below the Fermi energy. It will therefore cost an infinitesimal
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16 W. Harrison, Electronic Structure and
the Properties of Solids, W.H. Freeman,
San Francisco, 1980.

17 For 3D crystal structures this can become
quite a bit more complicated. See for exam-
ples https: // en. wikipedia. org/
wiki/ Brillouin_ zone .
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the volume per k-point in a 3D vol-
ume is given by ∆k = V1stBZ

N1N2N3
. This

can be done using Eq. 1.32 and Eq.
1.35
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amount of energy to excite an electron from an occupied to an unoccupied state. It
turns out that this is what ‘defines’ a metal: if we apply even the smallest perturbation
(e.g. electric field) along the chain, some electrons can (asymmetrically) occupy the
band and a current will flow. If on the other hand we would consider a chain of Helium
atoms (with 2 electrons per atom) the band would be exactly filled and the Fermi
level would lie just above the top of the band. In this case, there are no ‘empty’ states
for electrons to occupy; the band simply stops and there are no allowed solutions of
the Schrödinger equation at higher energy. We can apply a perturbation as large as
we like, but without empty states for the electrons to occupy no transitions can take
place. This is what defines a good insulator. Of course, in more realistic cases there
will be other atomic orbitals than just the 1s-orbital and there will be more bands
beyond the single cosine band of Fig. 1.6. Nevertheless, the energy separation between
subsequent bands can be very large. If the energy gap between a fully occupied band
and an empty band becomes small compared to, for example, temperature we use the
term semi-conductor rather than insulator.

In the previous paragraph I have discussed some properties that can be gleaned
directly from the electronic dispersion of a linear chain of 1s-orbitals. Most of the
related concepts have been extensively discussed during the course GM-1 and I cannot
repeat all of them here. If we move beyond the simplest example and include more
orbitals, more atoms per unit cell and/or more spatial dimensions the method to
solve the problem remains the same. Some important details do change however. For
example, in one spatial dimension (and in the absence of interactions between the
electrons18) we have the simple rule that chains of atoms are metallic if the atoms have
an odd number of electrons, while they are insulating if there are an even number
of electrons. This simple rule breaks down in higher dimension and quite often
the mixing of atomic orbitals results in overlapping bands. To get an idea of what a
‘real’ band structure looks like, the band structure of silicon-carbide is shown in Fig.
1.7. Some important features of tight-binding band structures in higher dimensions
will be discussed in the exercises at the end of this chapter. What the bandstructure of
silicon-carbide shows is that the lowest ‘1s’ - band indeed looks pretty much cosine like.
Note that a given band does not correspond to a particular atomic orbital. As soon
as more than one orbital is involved these orbitals will mix together and form bands
with varying amounts of orbital character. Fig. 1.7 also shows significant deviation
from simple cosine like bands for higher energy bands.

There is one important aspect that we have not touched upon yet: in a more
realistic problem where there is more than one orbital per unit cell there will be two
bands and they will be separated at the zone boundary by a band gap. This can be
seen clearly in Fig. 1.7 where the lowest band is separated from all others. The origin
of bandgaps will be discussed in the exercises at the end of the chapter.

1.8 The electron and the quasiparticle

Personally, this section discusses one of my favorite bits of (solid state) physics. On the
one hand it seems mundane, yet on the other hand it is extremely deep and a little bit
magical. It also applies to many more physical situations than the case discussed here
and we will encounter it a fewmore times during the course. Moreover, it indirectly led
to many important discoveries, including the Higgs mechanism and the formulation
of Quantum ElectroDynamics. It goes as follows.

Most of you will have an internal picture of an electron, perhaps a nice spherical,
silvery colored object. If you don’t have such a picture before your mind’s eye, imagine
that it looks like a nice spherical, silvery colored ball (you are even allowed to image
reflections of the surroundings in its surface). Apart from the fact that an electron is
an elementary particle and therefore a point-like object with no real diameter, such a
description works well for ordinary electrons in vacuum. This little particle has a mass
(9.10938356 · 10−31 kg to be precise) and a charge (1.60217662 · 10−19 Coulomb) that
does not vary from one electron to the next (as they are indistinguishable particles).
This particle we call ‘electron’. Now imagine an electron moving through a solid.
Wrong. It is not simply a ball bouncing around in between a bunch of larger balls.
Forget the whole spherical, silvery ball thing. It doesn’t exist in a solid. There are
several ways to see this; I will discuss a few of them. The first hint that electrons in
solids are different comes from the uncertainty principle. As discussed in the previous
sections the band momentum k is a good quantum number. You have shown that each
electrons occupies a well defined momentum state with a very small volume. Since
∆k is small, the uncertainty principle states that ∆xmust be large. Indeed for a good
metal the wave function can extend over almost a millimeter! There is however a more
mathematical approach to express these ideas. The first is to ask the question: ‘What is

18 Electrons always interact. Theoretically
it has been found that metals do not ex-
ist in 1 dimension, but instead a so-called
Luttinger liquid is formed. In this liquid
the electron falls apart into two objects: a
charged particle and a spin particle. These
objects move independently. The experi-
mental verification of these ideas is still
actively pursued (also in Amsterdam!).

Figure 1.7: Band structure of silicon carbide
along high symmetry directions of the Bril-
louin zone. Image credit: Hemstreet, L.A.,
Fong, C.Y. Silicon Carbide - 1973, Eds. Mar-
shall, R.C., Faust, J.W., Ryan, C.E., Univ. of
South Carolina Press, Columbia, S.C. 1974,
284.
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the momentum of an electron in a solid?’. To answer this question we should evaluate
the expectation value of the momentum operator for a ‘band’ electron〈

p
〉

=
〈
ψk

∣∣∣∣ħi ∇
∣∣∣∣ψk〉 (1.59)

To evaluate the right-hand side, we make use of the tight-binding ansatz Eq. 1.40. This
gives the following:〈

p
〉

= ħ

i

∑

R,R′ ,n,n′
b*n′ψ

*
n′ (r − R′)e−ik·R′∇bnψn(r − R)eik·R (1.60)

This can be simplified a bit to,〈
p
〉

= ħ

i

∑

R′ ,R,n,n′
b*n′bnψ

*
n′ (r − R′)∇ψn(r − R)eik·(R−R′ )

= ħ

i

∑

R,n,n′
b*n′bnψ

*
n′ (r − R′)∇ψn(r − R)�R,R′

=
∑

n,n′
b*n′bn

〈
ψatn′
∣∣p∣∣ψatn 〉

(1.61)

which shows that the physical momentum is a complicated sum of expectation values
and not simply equivalent to the crystal momentum ħk. Finally themass of the electron
has changed. For free electrons we have:

E = ħ2k2

2me
(1.62)

The electron mass is therefore equivalent to

1
me

= 1
ħ2

∇2
kEk (1.63)

A similar expression can be used to approximately define the mass of electrons in solids.
This can be seen by writing down the Taylor expansion for the electronic dispersion,

ε(k) = ε(k0) + 1
2

3∑

i=1

(
∂2ε

∂k2
i

)
k=k0

(ki − ki0)2 + ... (1.64)

By comparison with Eq. 1.63 we see that the second order term can be used to define
the band mass of the electron as, (

∂2ε

∂k2
i

)
k=k0

= ħ2

mb,i
(1.65)

To summarize, electrons in solids are not the same objects as free electrons. Elec-
trons in solids are therefore often called quasiparticles. These quasiparticles come in
many more flavors than just simple electrons. Quasiparticles can become very light
or very heavy and they can even have fractional electron charge. The development
of these ideas in the early 1930’s, 1940’s and 1950’s eventually led physicists like Hans
Bethe and Richard Feynman to the formulation of an exact theory of electromag-
netism (quantum electrodynamics or QED). It is this theory that allows the exact
calculation, with many digits accuracy, of the (vacuum) values of the electron charge
and mass quoted at the beginning of this section. Feynman’s formulation of QED
in turn proved to be extremely useful in the formulation of a complete theory of
electron-phonon superconductivity. We will return to this topic at the end of the
course. Since its inception the term quasiparticle is now applied more generally in
the context of condensed matter physics. The low energy excitations of a solid can be
similarly viewed as quasiparticles. Basically any low energy excitation (literally, an
excited state of the solid) that can be quantified with a quantum number (typically
momentum) and which has a long (→ ∞) lifetime can be viewed as a quasiparticle.
Probably the best known quasiparticle, other than the quasi-electron, is the phonon.
This is a low energy coherent vibration of the lattice. Just like the electron, phonons
follow a dispersion relation and provide a unique fingerprint for each and every solid.
In some sense phonons are the solid state equivalent of the rotational and vibrational
levels of molecules and their dispersion forms from these levels in much the same way
as the electronic dispersion from the atomic orbitals. Other quasi-particles that we
will encounter during this course are the polariton, the spinon and the boguliubon.
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EXERCISES I
ELECTRONIC STRUCTURE OF SOLIDS

In the following set of exercises we will discuss some problems that discuss either basic condensed
matter questions, or are related to solving tight binding problems.

THE FREE ELECTRON MODEL

In this exercise you will work through a derivation of the free electron model. The
aim of this exercise is to remind yourself of some important concepts concerning
the electronic structure of solids in momentum space. The free electron model starts
from the opposite limit compared to the tight-binding approximation. We consider
electrons moving through the ‘top’ of the atomic potential (Fig. 1.4). In this situation,
the atomic orbitals are not a good starting point to construct the Bloch wavefunctions.
Instead, we assume that we can use plane waves as a basis for our Bloch wave function,

ψ
k
(r) = 1√

V

∑

k

a
k
eik·r (E1.1)

As before, we expand the atomic potential in Fourier components:

U(r) =
∑

G

U
G
eiG·r (E1.2)

A Show that the Schrödinger equation leads to:

ħ2

2m

∑

k

k2a
k
eik·r +

∑

k′ ,G

U
G
a
k′ e

i(k′+G)·r = εk
∑

k′′

a
k′′ e

i(k′′ )·r (E1.3)

B Show that this equation leads to the following relation between the Fourier compo-
nents of the Bloch wave: (

ħ2k2

2m
− εk
)
a
k

+
∑

G

U
G
a
k−G = 0 ∀k (E1.4)

C Show that for a weak potential (U ≈ 0) you end up with,

εk ≈
ħ2k2

2m
(E1.5)

Note that in this case you have found the solution corresponding to the following
Schrödinger equation,

− ħ2

2m
∇2φ(r) = Eφ(r) (E1.6)

with φ(r) a plane wave.

THE KRONIG-PENNEY MODEL

In the previous exercise you derived the ‘central equation’ for the nearly free electron
model. In this exercise we will look at arguably the simplest model of a condensed
matter system (the Kronig-Penney model), that gives a first idea of how the electronic
structure of solids comes about. The Kronig Penney model consists of a chain of

Figure 1.8: Dirac comb poten-
tial with lattice spacing a. The
strength of each � peak is A.

atoms (in 1 dimension) where the atomic nuclei are replaced by a Delta function
potential (see fig. 1.8). The lattice potential is thus given by,

U(x) = A
∞∑

n=−∞
�(x − na) (E1.7)

1

2
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A Consider a finite chain of 2N+1 atoms (i.e. n = −N...N) with periodic boundary
conditions and show that the Fourier components UG of U(x) are given by:

UG = A

a
(E1.8)

Hint: Use the fact that
∑
N
n=1 cos(Gna) = N.

B Show that the a(k) appearing in the central equation (Eq. E1.4) can be written as:

a(k) = −2mA
ħ2a

f (k)
k2 − 2mε

ħ2

(E1.9)

C Show that f (k) has the property,

f (k) = f (k − 2πn/a) (E1.10)

D Show that the expression in Eq. E1.9 is equivalent to the condition,

−2mA
ħ2a

∑

n

1
(k − 2πn

a
)2 − 2mε

ħ2

= 1 (E1.11)

E define ε ≡ ħ2K2

2m to show that,

∑

n

1
(k − 2πn

a
)2 − 2mε

ħ2

= a

2K
sin(Ka)

cos(Ka) − cos(ka)
(E1.12)

Hint: use the following relation:
∑
n 1/(nπ + x) = cot(x)

F Show that ε and k have the following implicit relation,

cos(ka) = cos(Ka) + 1
bK

sin(Ka) (E1.13)

Show that this relation implies energy gaps in the E vs. k relation. These energy gaps
are the band gaps discussed in the lectures.

COHESION ENERGY

In this exercise we estimate the gain in kinetic energy that is partly responsible for the
cohesion energy of a solid. One of the factors contributing to the cohesion energy of
solids is the kinetic energy gain arising from the opening of band gaps. In this exercise
we estimate the kinetic energy for electrons in a 2D simple, square lattice.

Figure 1.9: 2D Brillouin zone of
the simple square lattice.

A Show for a simple square lattice in 2D that the kinetic energy at a corner of the first
Brillouin zone (point 1) is larger than at the midpoint of the side-face of the Brillouin
zone (point 2) by a factor of 2.

B What is this factor for a 3D simple cubic lattice?

C Give a condition that determines whether a divalent metal will be an insulator or a
metal.19

THE DENSITY OF STATES

19

3

19 Hint: in the previous exercise we have seen
that a band gap U opens between different
bands at the zone boundary.



The density of states is a fundamental quantity related to the electronic band structure.
The density of states measures how many "quantum states" are available in a solid,
per unit of energy. This important quantity determines many properties of solids (for
example, the specific heat, resistivity etc.). In this exercise we will derive the general
expression for the density of states in D dimensions.

A The number of states per unit energy, R(E), is defined as:

R(E) =
∑

k

(E1.14)

where the sum runs over all k such that ε(k) ≤ E. Use the fact that in the limit V → ∞,
∑

k

→
V

(2π)D

∫
dDk (E1.15)

to show that in the free electron model,

R(E) = LDmD/2

2D/2(πħ)D
cDE

D/2 (E1.16)

Hint: the volume of a D dimensional sphere is cDkD.

B The Fermi energy, EF, is defined as the energy separating occupied from unoccupied
states (at T=0). Show that for a system with Ne electrons,

Ne = 2LD

(2π)D
cDk

D
F . (E1.17)

C Use the definition of the density of states (ρ(E) ≡ dR(E)/dE), to show that,

EDk,min ≡ 2
∫ EF

0
dEρ(E)E = D

D + 2
NeEF. (E1.18)

TIGHT-BINDING BANDS OF YBa2Cu4O7−�

TheHTSC cuprates are a family of materials consisting of many different compositions.
One famous example is YBa2Cu4O7−� . By changing the oxygen content this material
can be tuned from an insulator to a HTSC superconductor with Tc ≈ 97 K. The unit

Figure 1.10: Unit cell of YBCO
with different elements indicated.
The unit cell consists of a stack of
alternating 1D CuO chains and 2D
CuO2 planes.

cell consists of "chain"-layers (top and bottom of the unit cell) separated by BaO layers
from the CuO2 plains (central two layers separated by Ytterbium). The BaO layers
are pretty good insulators and electronically separate the other layers. The result is
an electronic bandstructure consisting of nearly independent quasi 1 dimensional
Cu-O chains and quasi 2 dimensional CuO2 planes. In the following exercises we will
calculate the most important features of the bandstructure using the tight binding
approach. Note: the structure of this exercise is typical for an exercise you may be
expected to solve during an exam.

A We will be interested in the highest occupied band only. Which orbitals do you think
are relevant? Draw the unit cell of the Cu-O chain and indicate for both Cu and O the
orbital that is likely most relevant20.

4

5

20 In a solid the 4s-orbital has a lower en-
ergy compared to the 3d-orbital and is com-
pletely filled.
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B Show that from the tight binding assumption it follows that: (Ek − εp − βpp) −
(
βpd +

∑
R≠0 e

ik·Rγpd(R)
)

−
(
βdp +

∑
R≠0 e

ik·Rγdp(R)
)

(Ek − εd − βdd)

[ bp
bd

]
= 0 (E1.19)

Note that some of the overlap integrals are neglected. Can you give arguments why?

C Show that the eigenvalues of the matrix above are:

E±k =
ε̃d + ε̃p

2
± 1
2

√
(ε̃d − ε̃p)2 + 16γ̃2

pd
sin2

(
ka

2

)
(E1.20)

Assume that nearest neighbor hopping is the only relevant coupling.

D Discuss how the case ε̃d ≈ ε̃p compares to the 1s-orbital case discussed during the lecture.
Make a plot of the bandstructure. Will the chains be metallic or insulating?

E Discuss what happens in the opposite limit where |ε̃p − ε̃d| >> γpd.

F Sketch the CuO2 plane and indicate the unit cell.

G How many bands do you expect to count in figure 1.11? Why are there exactly this
many bands?

Figure 1.11: Left: tight binding
bandstructure of the CuO2-plane
along high symmetry directions.
Right: First Brillouin zone with
high symmetry point labeling.

H It turns out that there is only one band crossing the Fermi level (see fig. 1.11). In the
following we will calculate its dispersion. Based on the unit cell you sketched in F,
which of the orbitals sketched in Fig. 1.12 do you expect to have the largest overlap?
Draw the unit cell again, but now with the 3 relevant orbitals for the band crossing
the Fermi level. Indicate the relevant tight-binding parameters (e.g. εp, εd, βpd and γpd).
What can you say about the relative sign of βpd and γpd ?

I We are now ready to solve the problem. Follow the same route as in Exc. 5B to show
that: (Ek − ε̃p) −βpx py A1

−βpx py (Ek − ε̃p) A2
A3 A4 (Ek − ε̃d)

 bpx
bpy
bd

 = 0 (E1.21)

For simplicity set βpx py = βpx py = 0 and solve the above matrix equation. Show that
there are 3 solutions (as expected):

ENBk = ε̃p (E1.22)

and

E±k =
ε̃d + ε̃p

2
± 1
2

√
(ε̃d − ε̃p)2 + 16γ̃2

pd

[
sin2

(
kxa

2

)
+ sin2

(
kya

2

)]
(E1.23)

HINT:γpd = γdp.

J Take εp=-2 eV, (εd − εp) = 1 eV and γpd = 1.5 eV. Plot the bandstructure along the high
symmetry directions. Can you sketch how the Fermi surface changes as you shift the
value of εp from 0 to ≈ -3 eV?
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Figure 1.12: 2p and 3d orbital
probability distributions.
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ELECTROMAGNETISM MATTERS
Optical properties of solids.

KEYPOINTS:
® In solids photons behave as particles dressed with polariza-

tion clouds
® The optical response of a solid is a sensitive probe of the

electronic structure
® The classical Drude-Lorentz model captures the interaction

between light and matter.



2.1 Introduction

THe study of solids is largely based on the measurement of their electronic or mag-
netic properties. Simple examples include the resistivity of a material, which

enables us to distinguish between metals and insulators, or its magnetization. Most
modern probes of condensed matter systems (angle resolved photoemission spec-
troscopy, optical spectroscopy) make use of the interaction between light and matter
or between the electrons themselves (such as in scanning tunneling spectroscopy).
The reason that these probes are most useful is simple: the interaction keeping solids
together is electromagnetic as well. In other words, the Coulomb interaction keeps
crystals together and the most effective probes directly couple to this interaction.
In later chapters I will discuss the origin of magnetism and superconductivity and
observable properties related to them. Since these properties are electromagnetic
in origin, this chapter will provide you with an overview of the electrodynamics of
solids. Unfortunately, a derivation of the full quantum mechanical description is quite
laborious and not very insightful. Instead we will stick to a classical description. At the
end of this chapter I will try to give you some feeling where the quantum mechanical
description deviates. At the same time this will show that the quantummechanical
picture is mathematically almost equivalent to the classical one. Because of this reason,
optical properties of solids are to this day most often described using the pre quantum
mechanics Drude-Lorentz model. In the following all fields, currents, charge densities
etc. are implied to be position and time dependent if not written explicitly. Parts of
this chapter are based on published notes[2], which I wrote based on lectures given by
Prof. Dr. Dirk van der Marel during the XIth summerschool on strongly correlated
electron systems in Salerno, Italy.

2.2 Maxwell’s equations in the presence of matter

It is quite easy, in principle, to write down Maxwell’s equations for a solid with micro-
scopic granularity21:

∇ · e = 4πρmicro, (2.1)

∇ × e = −1
c

∂

∂t
b, (2.2)

∇ · b = 0, (2.3)

∇ × b = 1
c

∂

∂t
e + 4π

c
jmicro. (2.4)

Here e and b are the microscopic electric and magnetic fields respectively. ρmicro is
the total microscopic charge distribution and jmicro the total microscopic current
distribution 22. You could imagine chopping up a crystal into subunits, each with its
own microscopic charge and current density. Indeed the smallest sensible unit would
be a unit cell. The charge distribution for a collection of point sources with charge qi
can be written classically,

ρmicro =
∑

i

qi�(r − ri), (2.5)

or quantum mechanically as,

ρmicro = −e Ψ * (r) Ψ(r). (2.6)

Equations (2.1-2.4) are however not very practical to work with. As a first step we will
rewrite them in a more familiar form. To this end we average the fields, charge and
current distributions over a volume ∆V,

ρtotal(r) = 1
∆V

∫
∆V
ρmicro(r + r′)d3r′ , (2.7)

Jtotal(r) = 1
∆V

∫
∆V

Jmicro(r + r′)d3r′ , (2.8)

and similarly for E and B. This is sensible under the condition that a0 ≪ ∆V ≪ (2πc/ω)3
where a0 is the Bohr radius and ω the frequency of light. What this inequality is telling
us is that the interaction between light and matter is such, that details of the precise
charge distribution or current density on length scales comparable to the wavelength
of light are important. This is an equivalent expression of the diffraction limit. At the
same time it doesn’t seem tomake sense that the macroscopic properties are sensitively

21 Note that all subsequent equations are
written in the C.G.S. system of units. To
convert them to S.I. units, replace 4π by
1/ε0c, ES.I. by cEC.G.S. and finally c by
4π/µ0. The C.G.S. units are standard use
in optical spectroscopy.

22 With ‘total’ I mean charge or current due
to sources inside and outside the solid.
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dependent on details of the atomic nucleus. Using these averaged charge and current
densities we arrive at the standard Maxwell equations,

∇ · Etotal(r, t) = 4πρtotal(r, t), (2.9)

∇ × Etotal(r, t) = −1
c

∂

∂t
Btotal(r, t), (2.10)

∇ · Btotal(r, t) = 0, (2.11)

∇ × Btotal(r, t) = 1
c

∂

∂t
Etotal(r, t) + 4π

c
Jtotal(r, t). (2.12)

These relations are valid both inside and outside the solid. In order to see how matter
interacts with propagating electromagnetic waves we have to distinguish between
induced sources and external sources. We write Jtotal ≡ Jext + Jind and ρtotal ≡ ρext + ρind.
Both the induced and external charge distributions and current densities have to obey
the continuity equations separately,

∇ · Jind/ext + ∂
∂t
ρind/ext = 0. (2.13)

The continuity relation is very useful as it allows us to focus on just the current density:
if known, the charge density follows. There are three different sources for macroscopic,
induced currents that we can distinguish,

Jind = Jcond + ∂P
∂t

+ c∇ ×M. (2.14)

Thefirst termon the right hand side, Jcond, corresponds to the response of free (unbound)
charges to an applied field. To understand the origin of the second term we refer to
Fig. 2.13. We will mostly consider time varying electric fields (e.g. photons) in this
chapter. Imagine a collection of atoms in a given volume. These atoms consist of both
positive (red) and negative (blue) charges that will respond to the electric field to form
a dipole moment. Since the electric field is time dependent, the dipole moment will
be time dependent as well and a corresponding oscillating current will develop. This
current is described by the second term and is often referred to as the bound charge
response. Physically it corresponds to a change in the total polarization, P. Finally,
we include a term representing a current due to (induced) magnetization. Note that
this last term is purely transversal (the divergence of a rotation is always zero) and so
is easy to distinguish from the other two terms. It is also most often negligible and
we will not spend much attention to it. Since the induced free charge current due to
photons is necessarily transversal, ∇ · Jcond = 0, we can use the continuity equations to
show that the induced free charge density has to be zero and as a consequence that the
total induced charge density,

ρind = −∇ · P. (2.15)
It is sometimes convenient to introduce new fields

D(r, t) ≡ Eext(r, t) ≡ E(r, t) + 4πP(r, t), (2.16)

H(r, t) ≡ B(r, t) − 4πM(r, t), (2.17)
which are known as the displacement and magnetic fields23 so that using equations

(2.14-2.17) in equations (2.9) and (2.12) we find,

∇ · D(r, t) = 4πρext(r, t), (2.18)

∇ ×H(r, t) = 1
c

∂

∂t
D(r, t) + 4π

c
Jext(r, t) + 4π

c
Jcond(r, t). (2.19)

These equation can be simplified a little bit if we restrict ourselves to the interior of
the solid where the external charge and current density is by definition zero. Some
reshuffling allows us to cast the Maxwell equations in almost symmetric form:

∇ · D(r, t) = 0, (2.20)

∇ · B(r, t) = 0, (2.21)

∇ ×H(r, t) = 1
c

∂

∂t
D(r, t) + 4π

c
Jcond(r, t), (2.22)

∇ × E(r, t) = −1
c

∂

∂t
B(r, t). (2.23)

From the Maxwell equations we can derive the wave equations describing the propaga-
tion of electromagnetic waves in a medium. To make this possible we need to make
an assumption about the relation between applied fields on the one hand and induced
currents on the other. This is achieved by applying the ideas of linear response theory.

25

Figure 2.13: In a time varying electric field
current has to flow to accommodate the
changes in dipole moment.

23 As a matter of historic perspective, the B
field was originally known as the magne-
tizing field (i.e. the field that induces a
change in the magnetization) and the H
field as the total field. The latter is thus the
actual ‘magnetic’ field.



2.3 Linear Response Theory

Linear response theory is really an assumption about the nature of response functions.
The theory is widely applicable also outside the current scope. It is not really a theorem
(exceptions are well know), but for our purpose we will cast it in a form that makes it
look like a theorem:

The response of a system to a perturbation is linearly proportional to this perturbation.

Well known (and very useful) exceptions to this rule make up the field known as
non-linear optics. Our theorem will hold if we do not make our applied perturbations
too large. In the case of optics this means that it is alright to use a laser as long as we
keep the power low enough. To see the power of linear response theory at work, we
assume that the response of the induced polarization, magnetization and current are
linear in the applied fields:

P = χpE, (2.24)

M = χmH, (2.25)

J = χ JE. (2.26)

The proportionality constants are called susceptibilities. These are measures of how
susceptible a given medium is to respond to an applied perturbation. Note that the
electric field and currents can be complex quantities. The susceptibilities we have
defined above are however real numbers. Unfortunately, the notation used in the
description of the electromagnetic response of solids was historically developed from
empirical observations. As a result, the proportionality constant χ J is instead better
known as the conductivity σ. The other two susceptibilities are also better known in a
different form. These are not simply renamed symbols:

ε ≡ 1 + 4πχp (2.27)

is known as the (relative) dielectric permittivity. The second quantity,

µ ≡ 1 + 4πχm (2.28)

is called the magnetic permeability. Using these two expressions we can rewrite the
responses as:

P = ε − 1
4π

E (2.29)

M = µ
−1 − 1
4π

B (2.30)

J = σE. (2.31)

With these definitions the relations between the displacement field and the electric
field and the magnetic and magnetizing fields become:

D(r, t) = ε(r, t)E(r, t), (2.32)

H(r, t) = µ−1(r, t)B(r, t), (2.33)

There are a few things to note. First of all, in vacuum σ = 0, ε ≡ ε0 and µ ≡ µ0 where the
latter are the well knownfundamental constants24. In principle, the response functions
should depend on both position and time. For example, the dielectric permittivity is a
response function that connects the external field Eext at position r and time t with the
field E at all other times and positions. So in general,

Eext(r, t) =
∫ t

−∞

∫
ε′(r, r′ , t, t′)E(r′ , t′)d3r′dt′ . (2.34)

It turns out that in most solids we can assume the response function to be homoge-
neous25. With these definitions in place we are now in a position to formulate the
wave equations in the presence of matter.

24 There is one unfortunate aspect of using
C.G.S. units: in these units ε0 = µ0 = 1. In
modern electromagnetism, the light speed
is not a fundamental constant, but c ≡
1/√ε0µ0.

25 Spatial inhomogeneity, in particular in
quasi 2D materials, can result in interest-
ing optical properties.
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2.4 The wave equations and the polariton
To derive the wave equations, we start by taking the curl of Eq. 2.23

∇ × (∇ × E) = −1
c

∂

∂t
(∇ × B) (2.35)

Using standard vector relations26 and by noting that since ∇ · E = 0 in a solid we can
write,

∇2E = µ
c

∂

∂t
∇ ×H (2.36)

Next we make use of the third Maxwell relation, Eq. 2.22. We first rewrite it using the
linear response relations as:

∇ ×H = ε
c

∂E

∂t
+ 4πσ

c
E (2.37)

and then we plug it back into Eq. 2.35 to obtain an equation depending on the electric
field only:

∇2E = µε
c2
∂2E

∂t2
+ 4πµσ

c2
∂E

∂t
(2.38)

a similar exercise gives:

∇2H = µε
c2
∂2H

∂t2
+ 4πµσ

c2
∂H

∂t
(2.39)

These are the wave equations of electromagnetic radiation in the presence of matter. I
leave it to the reader to verify that these expression reduce to the well known wave
equations of EM-fields in vacuum.

The two wave equations, Eq. 2.38 and 2.39, determine the propagation of waves
through a medium. The exact solutions can be very complicated, depending on the
boundary conditions and other complicating factors. We will not consider such cases,
but instead use the simple case of an infinite medium. In that case we can take a simple
plane wave as a possible solution to the wave equations. In what follows we will only
consider the propagation of electric fields. The plane wave form for the electric field is,

E(r, t) = E0e
i(q·r−ωt), (2.40)

Inserting this into Eq. 2.38 and working out the derivatives gives:

−q2E = −µεω
2

c2
E − i4πµσω

c2
E (2.41)

We can eliminate the electric field and are then left with a relation between the
frequency and momentum of the plane wave,

ω = c√
µ
(
ε + 4πiσ

ω

)q (2.42)

At this point it is useful to introduce complex response functions. This is really a
matter of redefining some quantities. So far we have worked with thetwo real numbers
ε and σ. We rename these to ε1 and σ1. We then introduce the complex dielectric
function � ≡ ε1 + iε2 and the complex conductivity 	 ≡ σ1 + iσ2. From Eq. 2.42 we see
that if we take ε2 ≡ 4πσ1/ω, we can rewrite the dispersion relation as,

ω = c√
µ�
q (2.43)

We could also have opted to introduce the complex conductivity instead, but this form
is more compact and has a nicer physical analogy with the result obtained in vacuum.
In fact, the complex conductivity and dielectric function are really equivalent in that
they are related according to,

	 = iω

4π
(1 − �). (2.44)

Equation 2.43 is one of the fundamental results of this chapter. Let me reiterate
its meaning: it is the dispersion relation for electromagnetic waves (photons) in a
solid. It is the equivalent of the dispersion relation for electrons in a solid. Of course,
the description is purely classical and there are no hints in our description of the
underlying microscopic principles that govern the behavior of electrons in solids.
Instead, all material related properties are lumped into a single complex dielectric
function27. I have glossed over several details in the derivation that will simplify Eq.
2.43:

27

Show that..

∇ · E = 0 by making use of the lin-
ear response equations

26 i.e. ∇ × (∇ × f ) = ∇(∇ · f ) −∇2f .

27 It is in fact not such a bad approach: the
dielectric function can be calculated in a
quantum mechanical approach. The re-
sults of this chapter can then be used with-
out further modification. This is a conse-
quence of the fact that the wavelength of
light is large compared to the microscopic
length scales.



Kramers-Kronig relations

A fundamental principle in physics is the principle of causality: an effect cannot
precede its cause. This principle provides us with very useful relations between
the real and imaginary parts of response functions. The derivation is not too
complicated and can be found on e.g. wikipedia (https://en.wikipedia.org/
wiki/Kramers?Kronig_relations). The principle of causality when applied to the
electromagnetic response functions can be formulated as,

j(t) =
∫ t

−∞
M(t − t′)E(t′)dt′ .

Where M(t − t′ < 0) = 0. This is simply a restatement of the causality principle: we
switch on a driving force (E(t′)) at time t − t′ = 0. So, before this moment there can be no current. This statement can be
used to derive the Kramers-Kronig relations for the complex optical conductivity:

σ1(ω) = 1
π
P
∫ ∞

−∞

σ2(ω′)
ω′ −ω

dω′

and

σ2(ω) = − 1
π
P
∫ ∞

−∞

σ1(ω′)
ω′ −ω

dω′ .

where P denotes the Cauchy principal value. From these considerations one can also show that σ(−ω) = σ* (ω), which
implies that σ1(−ω) = σ1(ω) and σ2(−ω) = −σ2(ω). These relations between the real and imaginary parts of the optical
conductivity are examples of the general relations between real and imaginary parts of causal response functions
and they are referred to as Kramers-Kronig (KK) relations. They can be extremely useful both experimentally and
theoretically. For example, it may be straightforward to calculate the real part of the optical conductivity. The imaginary
part can then be obtained by making use of the Kramers-Kronig relations. These relations in their general form were
independently derived by Hendrik Kramers (Dutch) and Ralph Kronig (German) in 1926/27. Later in life they both
held appointments at the TU Delft. Image credits: wikipedia.

• As pointed out previously (Eq. 2.34) the dielectric function in principle depends
on position and time.

• An equivalent formulation can be obtained by using the Fourier representation of
the EM fields. In this formulation � ≡ �(q,ω)

• Since q ∝ 1/λ and since λ >> a with a the lattice constant, the momentum of a
photon is really small compared to typical electron momenta.

• We will concern ourselves in the remainder of this chapter with optical properties
of solids. Therefore we can safely assume q ≈ 0.

• Hence, Eq. 2.43 is an implicit solution: ω appears on both sides of the relation.

• In most solids µ is really small (10−4) compared to �.

• We have no idea what �(ω) looks like and so we haven’t really solved anything yet.

To end this section I want to draw your attention to the following. Equation 2.43 is
equally applicable outside solids. In other words, the dispersion relation of photons in
vacuum is28,

ω = cq = 2πc
λ

(2.45)

In other words, photons travel through vacuum at the speed of light and their frequency
is inversely proportional to their wavelength. Hopefully, you are familiar with this
result. We can use Eq. 2.45 to define the mass of a photon using the same relation as we
used in chapter 1.8 (see Eq. 1.63). Fortunately, taking the 2nd derivative of Eq. 2.45 with
respect tomomentumequals zero andwe find that the photon has nomass. Here comes
the punchline: inside a solid we should really use Eq. 2.43 and the 2nd derivative is
not necessarily equal to zero anymore. Put differently, photons propagating through a
solid can acquire an effective mass; inside a solid photons transform into quasiparticles!
The source of this transformation is found in the dielectric function. Since the real
part of the dielectric function is related to the charge susceptibility (Eq. 2.27), which
relates the electric field to the induced polarization (Eq. 2.24), the effective mass can
be seen to find its origin in the dressing of the photon with a polarization cloud. The
resulting quasiparticle is therefore called polariton.

28 Remember that we are using C.G.S. units
and therefore ε0 = µ0 = 1.

28

https://en.wikipedia.org/wiki/Kramers?Kronig_relations
https://en.wikipedia.org/wiki/Kramers?Kronig_relations


2.5 Polaritons
In this section we discuss some properties of electromagnetic waves propagating
through solids. As mentioned above, a polariton is a photon dressed up with the
excitations that exist inside solids. There are different ‘types’ of polaritons. For example,
one can have phonon-polaritons which are photons dressed up with lattice vibration
related polarization clouds. One way of understanding the changes in the photon fields
is by making use of the modified dispersion relation. Since our dielectric function
depends on ω, we write,

|q| =
√
µ�(ω)ω
c

. (2.46)

You are probably more familiar with the (real part of the) refractive index,

n(ω) = n + ik ≡
√
µε. (2.47)

In all cases considered here n > 0 and k > 029. We also note that Im(ε) ≥ 0 but it is
possible to have Re(ε) < 0. If k > 0 the wave traveling through the solid gets attenuated
according to,

E(r, t) = E0e
iω(nr/c−t)−r/� . (2.48)

The extinction of the wave occurs over a characteristic length scale � called the skin
depth,

� = c

ωk
= c

ω Im
√
µε1 + i4πµσ1/ω

. (2.49)

Note that we can have k > 0 if Im(ε) = 0 and Re(ε) < 0 so that the wave gets attenuated
even though there is no absorption. In table 2.1 we indicate some limits of the skin
depth. To get a better feeling of the properties and relevance of polaritons, we need a

Insulator 4πσ1
ω

≪ ε1 � ≈ c

2πσ1

√
ε1
µ

Metal 4πσ1
ω

≫ ε1 � ≈ c√
2πµσ1ω

Superconductor 4πσ1
ω

≪ ε1 = − c2

λ2ω2
� ≈ λ√

µ

Table 2.1: Some limiting cases of
the general expression Eq. (2.49).
λ in the last line is the London pen-
etration depth.

model description of the dielectric function. The model we will use during the course
is known as the Drude-Lorentz model. It actually consists of two ideas. The first is
known as the Drude model, while the second is known as the Lorentz model. They
are however nearly equivalent (the Drude model follows from a particular limit of
the Lorentz model). In the next section we will discuss some of the properties of the
Drude-Lorentz model.

2.6 The Drude-Lorentz model
The Drude model is one of the earliest attempts to describe the electromagnetic
response of a metal based on a microscopic picture. In 1900 Paul Drude published an
attempt to describe the optical properties of solids based on the application of the
kinetic (Boltzmann) theory to electrons (which had been discovered only a few years
before in 1896 by J.J. Thomson) in the presence of electromagnetic fields.

He considered a very simple model of a solid: it consisted of negatively charged
particles (electrons) that were moving on a positively charged, featureless background.
Note that the nucleus (and thus the precise structure of the atom) was not discovered
until 1911. He assumed that under the influence of an electric field some electrons
would be displaced relative to the positive background (see Fig. 2.14) resulting in a
current. Drude’s major breakthrough was to apply the kinetic theory of gases to the
ensemble of electrons. He imagined that electrons would move around and bounce of
each other, much like atoms in a gas would. This led him to realize that there would
be a characteristic (temperature dependent) time betweentwo collisions. This collision
time, τ, can be described in a newtonian picture as a damping force acting on the
electrons. This damping force depends on the average velocity of the electron and a
proportionality constant, Γ, known as the scattering rate:

F = −mΓv (2.50)

From these considerations it follows that the conductivity should be of the form,

	 = ne
2

m

1
Γ − iω

. (2.51)

29

29 Classically these are the only physical so-
lutions. A current, ‘hot’ field of research
concerns so-called meta-materials (with n
or k < 0) that are used to make invisibility
cloaks.

Figure 2.14: Negatively charged electrons
(blue) are displaced relative to a featureless
positive background (red) under the influ-
ence of an electric field.



Figure 2.15: Real part of the opti-
cal conductivity asfunction of pho-
ton energy. The plasma frequency,
ωp, and scattering rate, γ, are indi-
cated.

The pre-factor is often redefined as the plasma frequency ω2
p ≡ 4πne2/m. The derivation

of this expression is left as an exercise (see Exercise 1). The resulting (frequency depen-
dent) real part of the optical conductivity is plotted in Fig. 2.1530. Note that the zero
frequency limit of the optical conductivity is the inverse of the resistivity. In 1905, in
between deriving the co-variant formulation of Maxwell’s equations and working out
a ‘Theory of the electron’, Hendrik A. Lorentz extended Drude’s model to include the
response of bound electrons. In addition to the damping force introduced by Drude,
Lorentz included a restoring force that led him to the following expression for the
optical conductivity,

	(ω) = iω f 2

iωΓ − (Ω2
0 −ω2)

(2.52)

where f is the strength of the optical transition and Ω0 is known as the resonance
frequency. This expression reduces to the Drude result in the limit Ω0 → 0.

Remarkably, these results remain approximately correct even in the quantum
mechanical derivation. Unfortunately, deriving a proper quantum theory of the optical
response of solids is cumbersome. We will not attempt such a derivation, but instead
we take a quick look at the result. The quantummechanical formulation of the optical
conductivity is known as the Kubo-Greenwood formula:

	α,β(q,ω) = ie
2

V

∑

n,m≠n

e β(Ω−En)

ωmn

[
vnmα,qv

nm
β,−q

ω −ωmn + i�
+

vnmα,−qv
nm
β,q

ω +ωmn + i�

]
(2.53)

Here the subscripts α,β indicate the principal axes of the crystal, β = (kBT)−1 in the
exponent and � → 0. Furthermore,

vnmα,q ≡ ⟨ Ψm |vα,q| Ψn⟩ (2.54)

is known as the dipole-moment corresponding to the optical transition of an electron
from state | Ψn⟩ with momentum k to a state | Ψm⟩ with momentum k + q. Finally,

ωmn ≡ Em − En (2.55)

is the energy separation between the two states | Ψm,n⟩ 31. The Kubo-Greenwood for-
mula describes optical excitations of the ground state of a solid, while properly taking
transition probabilities and quantum statistics into account. The wavefunctions and
corresponding eigenenergies can, for example, be taken from a tight binding calcula-
tion, but they can also be obtained from more complicated theoretical constructs. It
can be shown (with some redefinitions that are at this point unimportant) that an
equivalent formulation is given by,

	α,α(q,ω) = iω

4π

∑

n,m≠n

Ω2
nm

i�ω − (ω2
mn −ω2)

(2.56)

30 A useful set of conversions between differ-
ent units that is worth remembering is: 1
eV = 8065 cm−1 = 11604 K.

31 For those of you familiar with it: the Kubo-
Greenwood formula is closely related to
Fermi’s golden rule.
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Figure 2.17: Real (black line) and imaginary
(red line) components for the dielectric func-
tion. The real part of the dielectric function
of the Drude model is negative at zero fre-
quency.

This expression is very similar to Eq. 2.52 apart from the sum. This sum runs over
the different electronic states and therefore corresponds to a sum over all possible
interband transitions between occupied and unoccupied bands (see Fig. 2.16). The
Lorentz model is therefore a useful and good description of any solid if we take several
terms (Lorentz oscillators) corresponding to Eq. 2.52. Note that the Kubo-Greenwood
formula only describes transitions between different bands (m ≠ n). It is also possible
to derive an expression for intraband transitions, which in some limit provides a
justification for the Drude result. The functional form, Eq. 2.51 is however only a good
description of real solids in the limit of low frequency, high temperature and in the
absence of significant electron-electron or electron-phonon interactions.

Combining the Drude and Lorentz model we finally obtain,

	(ω) =
ω2
p

4π
1

Γ f − iω
+
∑

i

iω f 2i

iωΓi − (Ω2
0,i −ω2)

(2.57)

From this we can immediately determine an expression for the dielectric function,

�(ω) = 1 −
ω2
p

ω(ω + iΓ)
−
∑

i

4π f 2i
iωΓi − (Ω2

0,i −ω2)
(2.58)

We conclude this section by plotting the Drude and Lorentz oscillators for the dielectric
function in Fig. 2.17.

2.7 The optical properties of solids

With a model for the dielectric function in place, we can return to our discussion of
the polariton and its relevance to the optical properties of a solid. Keep in mind that
the allowed solutions for electromagnetic waves in a solid are given by Eq. 2.43. In
combination with the Drude-Lorentz model, Eq. 2.58, we can now solve for the proper
relation betweenfrequency andmomentumof the EMwaves. Note that if the dielectric
function is negative, the polaritons become exponentially damped (the refractive index
in Eq. 2.48 will be imaginary). This implies that if the dielectric function is negative,
polariton solutions are not allowed to propagate inside the solid. We see from Fig. 2.17
that the real part of the dielectric function is negative for a finite range of frequencies
on the high frequency side of the peak in the imaginary part. The actual range of
frequencies where the dielectric function is negative of course depends on the chosen
parameters. In Fig. 2.18 we show the polariton dispersion calculated for a Lorentz
oscillator for a few parameter values. The real part of the dielectric function is shown
on the left, while the polariton dispersions calculated with Eq. 2.43 are shown on the
right. As you should have expected, the polariton dispersion is linear in momentum
for f = 0, corresponding to the dispersion relation of photons in vacuum. For finite
oscillator strength, the dispersion is modified and acquires a momentum dependence.
Notably the modification of the dispersion is strongest close to the maximum in σ1. If
the coupling between the EM wave and the electron system (quantified by f , or in a
quantum version by the expectation value of the dipole moment) is strong enough
the electrons will respond to the EM wave and will oscillate in phase. If the electron
system is driven too fast (i.e. for frequencies larger than the resonance frequency), it
can no longer follow the oscillation and will start to lag behind in phase. For photon
frequencies much larger than the resonance frequency, the electron system reacts too
slow and the photon propagates unhindered.

The polariton dispersion is intimately tied to the reflection or transmission of waves
at the interface between a solid and its surroundings. Imagine a photon impinging
on the surface of a material: depending on its energy there may or may not be a
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Figure 2.16: Direct interband transition be-
tween the occupied valence band and the
unoccupied conduction band. The onset of
the transition is indicated by ωg .



Figure 2.18: (Left): Real part of the (Lorentz)
dielectric function for a few parameter val-
ues (corresponding to the values indicated
in the right hand graph). Note that as the
strength increases, ε1(ω) becomes negative.
The frequency range over which ε1(ω) is neg-
ative depends on both f and Γ. (Right):
Polariton solution calculated using the full
complex �(ω) for the parameter values indi-
cated. Note that as the width and strength
increase a band of energies appears where
no solutions are allowed (blue curve).

solution inside the solid. If there is a solution, the wave will enter the material and
propagate for a certain distance before being attenuated. If this distance is longer than
the thickness of the solid, the wave will subsequently leave the solid and continue its
journey through vacuum. On the other hand, if there is no solution the energy stored
in the wave needs to go somewhere. If the energy of the incoming wave is close to a
resonance, the energy will be dissipated 32 inside the solid. If on the other hand the
energy of the incoming wave cannot be absorbed in the material, the wave will be
reflected back into the vacuum. In this situation the reflectivity of the material will be
finite and the transmission zero. The reflectivity of a (semi-infinite) solid is related to
the dielectric function according to,

R(ω) =

∣∣∣∣∣1 −
√
�

1 +
√
�

∣∣∣∣∣
2

(2.59)

At the same time, the transmission in the absence of absorption is defined simply as
1 − R(ω). For a slab of finite thickness the transmission is a somewhat more complicated
function of the dielectric function due to the fact that we need to consider multiple
internal reflections.

We can qualitatively understand many of the optical properties of solids. First of
all, we expect a fundamental difference between metals and insulators: metals are
characterized by ‘free’ electrons and therefore the dielectric function will have a Drude
peak. Figure 2.17 shows that in this case the dielectric function is negative over a
range of frequencies, starting at zero frequency; at low frequency polaritons cannot
propagate in a metal. This is equivalent to the well known result obtained from static
electromagnetism, namely that there can be no electric field inside a perfect conductor.
At higher frequencies the dielectric function turns positive and the specific frequency
where this happens (in the absence of interband transitions) is known as the (screened)
plasma frequency. Note that the plasma frequency is proportional to the density of
free charge carriers (Eq. 2.51). For a typical metal the charge density is on the order
of 1021 cm−3, which works out to plasma frequencies on the order of a few to ten’s of
electronVolts. As a result metals are not transparent. Insulators on the other hand
have no Drude peak and are typically transparent in the visible range of the spectrum.
The amount of absorption and the frequencies where a material absorbs are crucial to
determine the color of a material. For example, the difference in color between copper,
gold and silver arises mainly from a difference in the onset of interband transitions (in
the UV range for silver, in the blue for gold and in the green for copper).

2.8 Screening
I would like to point out a final important aspect of the dielectric function before
ending this chapter. Youmay have wondered how it is possible that solids don’t collapse
or explode under the strong Coulomb repulsion or attraction between positive and
negative charges. One aspect related to this is screening33. To see how screening works,
consider the Maxwell equation (in SI),

∇ · E = ρ

ε0
(2.60)

If we take for ρ for the moment just two electric charges q1 and q2, we know that the
potential becomes:

V(r) = q1q2

4πε0
∣∣r1 − r2∣∣ (2.61)

32 This requires finite ε2!

33 Another aspect is related to Fermi-Dirac
statistics: electrons are fermions and as a
result cannot occupy the same space. If
you try to squeeze electrons into a small
volume an outward pressure will develop.
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where r = r1 − r2. This potential is simply the static Coulomb potential and at first
glance seems to make it impossible to form a solid. Somehow the strong repulsion
between the electrons is overcome. In this chapter we have seen that inside the solid
we should take instead:

∇ · D = ρ

ε0
(2.62)

which is equivalent to
∇ · E = ρ

ε0ε(k,ω)
(2.63)

From this we see that it is the dielectricfunction thatmay be responsible for a significant
reduction of the Coulomb potential. This is known as ‘screening’ of the Coulomb
potential. We can assume a very simple form of the screened Coulomb potential,
namely:

VTF(r) = q1q2

4πε0r
e−kTF ·r (2.64)

This potential is known as a Yukawa potential. The upshot of it is that the static
Coulomb is significantly reduced in range. As a result this means that the potential
energy cost of confining a bunch of electrons to a small volume is significantly reduced.
In exercise 2 you are asked to show that from Eq. 2.64 follows that the dielectric
function has a k-dependent piece given by,

ε(k) = 1 + k
2
TF

k2
(2.65)

kTF is known as the inverse screening length34 and can be shown to be approximately
given by,

kTF ≈

√
4kF
πaB

(2.66)

where kF is the Fermi wavevector and aB the Bohr radius. This result is known as
Thomas-Fermi screening and provides an important explanation for the screening of
charged impurities in solids. More generally we observe that by comparison it follows
from Eq. 2.63 that inside a solid the bare, static Coulomb interaction changes to,

Vscr(k,ω) = VC(k,ω)
ε(k,ω)

(2.67)

This important result shows that the excitations of the solid (captured by the response
function ε) combine to reduce (screen) the original Coulomb potential. This result will
play an important role in Chapters 4 & 5
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EXERCISES II
OPTICAL PROPERTIES OF SOLIDS

In these exercises you will derive some of the most used optical properties of solids. In the first
exercise you will derive the Drude-Lorentz model. The dielectric function derived here forms the
basis for the remaining exercises where you will derive the reflectivity of materials and some of
its limits.

THE LORENTZ-MODEL

Consider a static background of positive ions and bound electrons in the presence of a
time varying electron field.

A Which forces act on the electrons?

B Show that the equation of motion can be written as:

m(Ω2 −ω2 − iωΓ)x(ω) = qE(ω) (E2.1)

Hint: start from Newton’s equation F=ma and use the Fourier transforms of

x(t) =
∫
dωx(ω)e−iωt (E2.2)

and
E(t) =

∫
dωE(ω)e−iωt (E2.3)

C We can use the result of the previous exercise to find an expression for the complex
conductivity. We are looking for an expression of the form: j(ω) = 	(ω)E(ω). Starting
from the definition of current density, j(t) = −nev(t), show that:

	(ω) =
ω2
p

4π
iω

iωΓ − (Ω2 −ω2)
(E2.4)

D How does the Drude expression follow from this? Give a physical explanation.

E Find the band edges of the forbidden band in which no polariton solution exists.
Discuss your solution for the case Γ = 0. Use this result to explain why metals are never
transparent.

SCREENED COULOMB POTENTIAL

In this exercise you will derive the momentum dependence of the dielectric function
assuming a screened Coulomb potential.

A The Fourier transform g(k) of a function f (r) is given by,

g(k) =
∫
V

eik·r f (r)d3r (E2.5)

Use spherical coordinates to show that this can be rewritten as35,

g(k) = 4π
k

∫ ∞

0
r f (r) sin(kr)dr (E2.6)

B Show that the Fourier transform of the Coulomb potential V(r) = e2/4πε0r is36 ,

V(k) = e2

ε0k2
(E2.7)

C Show that for a dielectric function of the form

ε(k) = 1 + k
2
TF

k2
(E2.8)

the potential becomes a screened Coulomb potential of the form

VTF(r) = q1q2

4πε0r
e−kTF ·r (E2.9)

THE FRESNEL EQUATIONS

1

2

35 Hint: introduce a variable χ = cos(θ) and
use k · r = kr cos(θ).

36 Hint: use

1
r

= lim
ε→0

e−εr

r
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In this exercise you will derive the Fresnel equations that describe the reflection and
transmission at an interface betweentwo media. For simplicity we will assume normal
incidence.

A Use a plane wave expansion for the electric field E and magnetic field B in combination
with the Maxwell relation Eq. 2.23 to derive the following relation between the two
fields:

B0

E0
=
√
ε(q,ω) (E2.10)

where we have assumed that µ = 1.

B Now consider figure 2.19. We have an incoming wave Ei in a medium labelled 1, a
transmitted wave propagating though medium 2 labelled Et and a reflected wave Er.
At the interface we must have Ei + Er = Et. Show that from this it follows that,

Bi − Br = Bt (E2.11)

C Combine the previous results to show that,

Ei − Er = n2

n1
Et (E2.12)

D Use this to define the complex reflection,

r = n1 − n2
n1 + n2

(E2.13)

and transmission
t = 2n1

n1 + n2
(E2.14)

coefficients.

E Show that Eq. 2.59 follows from E2.13 assuming an incoming wave traveling through
vacuum.

THE HAGEN-RUBENS RELATION

The Hagen-Rubens relation is a simple relation between the DC conductivity (or in
other words, the inverse of the resistivity) and the low energy (far infrared) reflectivity
of a metal. We approximate the Drude expression for the dielectric function in the
limit that ωτ << 1 as,

�(ω) = 1 + i4πσ0
ω

(E2.15)

Use the result of Exc. 3 to show that,

R(ω) ≈ 1 −
√

2ω
πσ0

(E2.16)

REFLECTIVITY OF SEMICONDUCTORS

In this exercise we will consider a simplified relation between the energy gap of a semi
conductor and the reflectivity. A rough approximation for the dielectric function of a
semi conductor can be obtained as follows. Only photons with an energy larger than
the energy gap ωg can be absorbed. Therefore the imaginary part of the dielectric
function (or the real part of the optical conductivity) can be very roughly approximated
by a delta function,

ε2(ω) =
ω2
p

2ω
�(ω −ωg) (E2.17)

The Kramers-Kronig relation can now be used to derive the real part of the dielectric
function,

ε1(ω) = 1 +
ω2
p

ω2
g −ω2

(E2.18)

Derive an expression for the reflectivity in the limit ω << ωg

35
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Figure 2.19: Sketch of the situation consid-
ered in the derivation of the Fresnel equa-
tions.
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NON-MAGNETS IN A MAGNETIC FIELD
Putting the magnetism back into electromagnetism

KEYPOINTS:
® A particle in a magnetic field exhibits a large degeneracy

of states.
® Bands in solids become Landau levels.

® The Hall conductivity allows measuring the electron den-
sity in a solid.



3.1 Introduction

IN most materials there is only a very weak response of the electron system to the
magnetic component of the photon field. There are however many interesting

features that emerge when a large static magnetic field is applied. In subsequent
chapters we will discuss spontaneously magnetized states of matter. As an introduction
we will discuss the properties of non-magnetic materials in an applied magnetic field
in this chapter.

3.2 One particle in a magnetic field
We will consider the effect of a static, applied magnetic field on a solid or crystal that is
not magnetic by itself. As will become clear, some properties of materials show drastic
changes in the presence of a static magnetic field. First, we will consider a simplified
single particle Hamiltonian for an electron moving through a magnetic field. As a
reminder, the Hamiltonian for a single particle reads,[

p2

2m
+ V(r)

]
ψ(r) = Eψ(r). (3.1)

To include electromagnetism at the single particle level, we can make use of the
so-called minimal substitution,

p → p − q
c
A. (3.2)

The minimal substitution is sufficient to take the effects of electrons moving through
a static magnetic field into account37. The full single particle Hamiltonian is thus,[

(p − q

c
A)2

2m
+ V(r)

]
ψ(r) = Eψ(r). (3.3)

We will ignore the complication of the lattice potential and consider just the problem
of an electron moving through a magnetic field. Expanding the quadratic term we
have:

(p − q

c
A)2

2m
= 1
2m

�
p2 − 2q

c
p · A + q

2

c2
A2

�
(3.4)

To make progress we need to have an expression for the vector potential. We will be
interested in a magnetic field applied along the ẑ- direction. From the relation of the
magnetic field to the vector potential38, it then follows that

B = Bz = (∂xAy − ∂yAx)ẑ. (3.5)

It is important to remember that the electromagnetic fields are gauge invariant: we
can change the vector potential according to

A → A′ = A + ∇ψ (3.6)

provided that we also change the scalar potential according to,

φ → φ′ = φ − 1
c

∂ψ

∂t
. (3.7)

This freedom allows us to cast the problem in a convenient form. Typically one works
in the Coulomb gauge, ∇ · A = 0, but for this problem there is a much more useful
gauge, known as the Landau gauge. In the Landau gauge, the vector potential is chosen
to be39

A = Bx ŷ, (3.8)

with ŷ a unit vector and x an operator. Note that this form of the vector potential is
consistent with Eq. 3.5.

We can now rewrite Eq. 3.4 as:

1
2m

�
p2 − 2q

c
p · A + q

2

c2
A2

�
= p2x

2m
+

p2y

2m
− q

mc
Bxpy + q

2B2

2mc2
x2 + p2z

2m
. (3.9)

Now we note that the Hamiltonian depends on py and pz, but not on the conjugate
operators y and z. As a result [

H, py,z
]

= 0 (3.10)

37 The minimal substitution ignores multi-
pole coupling contributions of the charge
distributions.

38 The magnetic field is the rotation of the

vector potential, B = ∇ × A, where explic-
itly,

∇ × A =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ .

39 The general result for a particle mov-
ing in the (x,y)-plane can be obtained
by using the symmetric gauge, which
chooses a vector potential of the form

A = 1
2

�
−Byx̂ + Bxŷ

�
. It makes the math

more complicated and doesn’t add any-
thing to the discussion however.
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A particle in a magnetic field

A particle moving through a magnetic field is subject to a Lorentz force. The
particle (classically) follows a circular path if the Lorentz force is balanced by the
centripetal force. A stable orbit is found by balancing these two forces, which yields
the following relation:

Fc = FL →
v⊥

R
= qB

mec
.

The time required to complete a full circular orbit is of course given by T = 2πR
v⊥

. The
inverse of this period is known as the cyclotron frequency, ωc. Given the above,
the cyclotron frequency is

ωc = 2π
T

= qB

mec
.

What this is telling you is that as the field increases, the orbits become tighter and
since the speed remains constant this results in a larger number of orbits per second.

and therefore the wavefunctions must simultaneously be eigenfunctions of py and pz.
The eigenfunctions of py are the plane waves,

φ(y) = 1√
V
eiky y (3.11)

obeying the dispersion relation

εky =
ħ2k2y

2m
(3.12)

and similarly for pz.
To solve the full Schrödinger equation with the Hamiltonian, Eq. 3.9, we can

now make use of the separability of the wavefunctions40. There is only a single term
containing pz and we can evaluate it immediately: it contributes a term εkz = ħ2k2z /2m
to the energy. This leaves us with:

Hψ(x, y) =

[
p2x

2m
+ q

2B2

2mc2
x2 +

p2y

2m
− q

mc
Bxpy

]
ψ(x, y)

=

[
p2x

2m
+ q

2B2

2mc2
x2 +

ħ2k2y

2m
− q

mc
Bxħky

]
eiky yψ(x), (3.13)

Now we note that Eq. 3.13 only depends on the operators x and px, so that it represents
a 1D problem41. The remaining problem is in fact a well known one, but it appears
unfamiliar due to the form in which it is written. If we introduce the cyclotron
frequency ωc ≡ qB/mec and complete a square,

Hψ(x, y) =

[
p2x

2m
+ 1
2
mω2

c x
2 −ωcħkyx +

ħ2k2y

2m

]
ψ(x, y) (3.14)

=

[
p2x

2m
+ 1
2
mω2

c

�
x − ħky

mωc

�2
]
ψ(x, y) (3.15)

Finally, we define x0 = ħky/mωc to find:

Hψ(x, y) =
[
p2x

2m
+ 1
2
mω2

c (x − x0)
2
]
ψ(x, y) (3.16)

Hopefully, you’ll recognize this as a quantum harmonic oscillator (QHO) problem.
This is a standard problem in quantum physics, and the eigenvalues and eigenfunctions
are well known. The eigenvalues are,

En = ħωc

�
n + 1

2

�
+
ħ2k2∥

2m
. (3.17)

The first term (with n = 0, 1, 2, ...) represent the energies of subsequent levels of the
harmonic oscillator, while the second term originates in the velocity perpendicular to
the x-direction42.
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Show that..

Eq. 3.10 implies that the eigenfunc-
tions of the Hamiltonian are also
eigenfunctions of py,z.

40 That is, the wave function can be written
as ψ(x, y, z) = φ(x)φ(y)φ(z).

41 In the symmetric gauge this works out
slightly differently. As the name suggests
the wavefunction will not be separable in
(x, y) and the Hamiltonian will contain
symmetric contributions for both x and y.

42 Eq. 3.17 is equally valid if we had chosen
the symmetric gauge with initial velocity
in arbitrary direction. The second term
then represents the contribution to the en-
ergy arising from the motion parallel (or
tangential) to the classical orbit, hence the
∥ sign.



Figure 3.20: (Left) The first few wavefunc-
tions corresponding to Eq. 3.18. Ψn denotes
the n-th excited state of the oscillator. Note
that the center of the well corresponds to
the radius of the classical orbit. (Right) Prob-
ability functions, Pn = | Ψn|2. Note that for
the lowest energy, the probability peaks ex-
actly at the classical orbit, while for higher
energy levels the probability to find the par-
ticle away from the classical orbit increases.

The eigenfunctions for arbitrary n are Hankel functions (the derivation of which is
beyond the scope of this course) of the form,

ψ(x) = 1√
2nn!

�
mωc

πħ

�1/4
e−

mωc(x − x0)2
2ħ Hn

�√
mωc

ħ
(x − x0)

�
, (3.18)

with the Hermite polynomials, Hn, given by

Hn(x) = (−1)nex
2 dn

dxn

�
e−x

2
�
. (3.19)

These expressions probably don’t provide you with a lot of insight, the graphical
representation is however more telling. For n = 0 the eigenfunction is Gaussian
distribution around the average position x0. The eigenfunctions for larger n are n-
modal bell-shaped curves, as shown in figure 3.20.

Translating theQHOproblem to our context, we have thus found that in amagnetic
field, a particle doesn’t just describe a circular orbit as in the classical case. Instead the
probability to find the particle exactly at the classical orbital (with radius x0) is maximal
only for the lowest energy level. At higher energies the wave functions become more
complex and the analogy with the circular orbit is lost43.

Sowhat happenswhenwe adjust themagnetic field? Looking back to our definition
of x0 to see what happens as function of magnetic field,

x0 =
ħky

mωc
=
ħkyc

qB
, (3.20)

we find that with increasing magnetic field, x0 becomes smaller and thus the orbit
becomes more localized. Another thing to note is that the standard deviation of our
normal distribution decreases for larger B, and thus the orbits in some sense become
more classical.

3.3 From single particle physics to Landau levels
In the previous section we discussed the quantum problem of a single particle in a
magnetic field. We now wish to make the link to solid state physics. This is, at some
level, actually not all that complicated if we make some assumptions. First of all, we
will assume that we are dealing with a metal. In that case, we can refer back to some of
the assumptions underlying the (nearly) free electron model. In other words, we can
assume that the main contribution of the lattice potential is to change the electronic
dispersion to that of ‘free’ quasi-particles, i.e. εk = ħ2k2/2m with m not necessarily the
free electron mass. We imagine that we have solved this problem first and then add
the complication of a static magnetic field. After the first step we have ended up with
a complete set of N orthonormal solutions to the Schrödinger equation. The energy of
these solutions becomes modified according an expression similar to Eq. 3.17. There is
however a crucial modification for electrons moving through a periodic potential: the
momentum becomes quantized! In other words, in the presence of the periodic lattice
potential we should have taken the quantized momentum parallel to the orbit,

ky = 2πN
Ly

. (3.21)

43 If we had used the symmetric gauge, we
would have found that the particles de-
scribe circular orbits with radius r20 =
x20 + y20.
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Figure 3.21: (Top left) Fermi surface for
three dimensions for a zero B-field (the
Fermi sphere). (Bottom left) Correspond-
ing density of states fin the absence of a
magnetic field. The density of states ρ has a
square root dependence on energy E. (Top
right) Density of states for a finite B-field,
resulting in Fermi cylinders (or Landau lev-
els). (Bottom right) Corresponding density
of states. The peaks appearing in the density
of states correspond to a multiple times the
cyclotron frequency. Also note that the en-
ergy position of these peaks depends on the
applied magnetic field.

where Ly is the dimension of the crystal in the y-direction and N the number of lattice
sites along the same direction. Let’s also assume that the electron is confined to the
solid,

0 < x0 < Lx. (3.22)
The combination of these two boundary conditions leads to:

0 < N <
mωcLxLy

2πħ
. (3.23)

This provides a maximum on the number, or degeneracy, of a given harmonic oscillator
level n. Since the area of the crystal is A = LxLy, we can substitute our cyclotron
frequency to find

N = BA�
hc

e

� = Φ
2Φ0

. (3.24)

Here Φ is the total flux and Φ0 = 2e
hc

is the flux quantum, a constant per electron44.
The interpretation is a bit different. We are now working in a periodic momentum

space and the electrons form bands that are clustered around specific energies. These
bands are much more confined in energy and are thus known as Landau levels. We
find that each level consists of a large number of states45. Just like a ‘normal’ electronic
band structure problem, we now start adding electrons to the state with n = 0 until we
have filled up all the available states. We then continue to fill levels with larger n until
we run out of electrons.

To see how the discussion above impacts on observable properties of materials
depends on the effective dimensionality of the material. In the nearly free electron
model in three dimensions the density of states has a square root energy dependence
(see Exc. 4). This situation is sketched on the left in Fig. 3.21. In the top left panel
the Fermi sphere is shown in the absence of magnetic field. The density of states
is shown in the bottom left panel. As soon as we apply a finite magnetic field this
picture changes to what is shown on the right hand side. The Fermi sphere breaks up
into cylinders46 and the density of states acquires additional features. The additional
peaks in the density of states correspond in energy to the energy level of the harmonic
oscillators and have great significance for the behavior of solids in applied fields. As an
example consider the resistivity of a material. The Drude model tells you that (see Eq.
2.51) the resistivity of a metal is approximately given by,

ρ = m

ne2
1
τ

(3.25)
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44 The factor two in the numerator of the frac-
tion is a reminder of the fact that we can
puttwo electrons in each electron state, one
with spin up, and one with spin down.

45 Note that the flux quantum Φ0 = 2.067 ·
10−15 Wb. Since 1 Wb = 1 T·m2, we have
a total of 2 · 1014 states available per m2

in a 1 Tesla field. Typical electron densi-
ties for a metal are of the same order of
magnitude.

46 This is not entirely correct. The cylinders
will be deformed along the kz direction in a
real crystal. The sketch in Fig 3.21 would
apply to a quasi two dimensional crystal
where the dispersion along the kz direction
is negligible.



The n appearing in the denominator is the density of free electrons and this is mainly
determined by the density of states at the Fermi level. If the density of states at the
Fermi level is zero (for example because there is a gap in the dispersion at the Fermi
level), it will cost a lot of energy to excite electrons and the resistivity will be high. If
on the other hand the density of states is high both above and below the Fermi level,
it will hardly cost any energy to excite a lot of electrons and the resistivity will be low.
For a metal we will have a density of states as in the lower left panel of Fig. 3.21 and
the resistivity will be a certain value. Now we switch on our magnetic field and slowly
crank up the field. As the field increases the peaks in the density of states depicted in
the lower right hand panel of Fig. 3.21 will shift along the horizontal axis. As a result
the density of states will oscillate and consequently also the resistivity will oscillate.
These oscillations are known as Shubnikov - de Haas oscillations. The resistivity is
however not the only quantity that will oscillate; many other transport properties
such as specific heat and the magnetic susceptibility47 will display similar quantum
oscillations in magnetic field.

3.4 Conductivity revisited

In the previous chapter we have derived an expression for the optical properties of a
solid in a magnetic field. In Exc. 1 we found that the optical conductivity in a magnetic
field is a tensor and the relation between the current and the applied electric field is
given by,

j = ←→
σE (3.26)

with the components of the conductivity tensor,

σxx = σyy =
ω2
p(Γ − iω)

4π[(Γ − iω)2 +ω2
c ]
, σxy = −σyx =

ω2
pωc

4π[(Γ − iω)2 +ω2
c ]
. (3.27)

This is an interesting result. In zero field, the cyclotron frequency ωc is zero and the
off-diagonal components vanish. The diagonal components of the conductivity tensor
reduce to the standard Drude result. For a more arbitrary direction of the field we end
up with a rank 3 tensor for the conductivity, jxjy

jz

 =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

ExEy
Ez

 . (3.28)

In most cases the off-diagonal elements are zero, jxjy
jz

 =

σxx 0 0
0 σyy 0
0 0 σzz

ExEy
Ez

 , (3.29)

If the system is time reversal invariant, the off-diagonal components have to be zero.
Since a magnetic field breaks time reversal invariance, the off-diagonal components
become finite48.

In compact notation the current is related to the field as,[
jx
jy

]
= 	H

[
(Γ − iω) ωc
−ωc (Γ − iω)

] [
Ex
Ey

]
. (3.30)

where,

	H =
ω2
p

4π[(Γ − iω)2 +ω2
c ]

(3.31)

We will use these expressions for a discussion of the Hall effect in the next section.

3.5 The Hall effect

The above result turns out to be very useful in the characterization of materials as we
will now show. There is one difficulty however. Resistivity is defined as the inverse of
the conductivity, σ−1, so we have to invert a 3 × 3 matrix to calculate the resistance in a
B-field. The matrix equation we would have to invert has the form49

ExEy
Ez

 =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

−1  jxjy
jz

 . (3.32)

47 The latter effect is known as the de Haas -
van Alphen effect.

48 Note that some materials don’t require a
magnetic field to have finite off-diagonal
elements. An example thereof would be a
ferromagnet.

49 Recasting our linear response expression
to Ohm’s law, V = I · R.
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Inverting a general 3 × 3 matrix is not very funny, but if we choose the B-field along
a principal axis, we can reduce the problem to inverting a 2 × 2-matrix. Inverting a
general 2 × 2 conductivity tensor gives,[

σxx σxy
σyx σyy

]−1
= 1
σxxσyy − σyxσxy

[
σyy −σxy
−σyx σxx

]
. (3.33)

For an isotropic material50 we can simplify this expression to,[
ρxx ρxy
ρyx ρyy

]
= 1
σ2xx + σ2xy

[
σxx −σxy
σxy σxx

]
(3.34)

to obtain
ρxx = σxx

σ2xx + σ2xy
ρxy =

−σxy
σ2xx + σ2xy

. (3.35)

We can now make use of Eq. 3.30 to determine the resistivity51 of a material in a
magnetic field,

←→
ρ =

(
σH

[
Γ ωc
−ωc Γ

])−1
, (3.36)

which gives,
←→
ρ = 4π

ω2
p

[
Γ −ωc
ωc Γ

]
. (3.37)

Now we can use the definition of the plasma and cyclotron frequencies to simplify the
off-diagonal elements and find:

ρxy = 4πωc
ω2
p

=
4π

�
eB

mc

�
�
4πne2

m

� = B

nec
. (3.38)

This turns out to be a very useful result. Imagine that we have a material in a B-field
and we apply some voltage. The electrons moving through the material are deflected
by the magnetic field and heap up near the sides of the material. At the same time,
positively charged ‘holes’ heap up on the opposite side of the material. This imbalance
in charge density causes a voltage to appear. Note that no net current flows between
the two edges52.

Using our expression
Ey = B

nec
jx, (3.39)

we can then derive a Hall voltage, which reads53

VH,y = RHB
Ix

d
. (3.40)

From which the Hall coefficient RH ≡ − 1
nec

follows. The Hall coefficient depends on a
single material specific quantity: the electron density n. Therefore, we can measure
directly the electron density if we measure the Hall voltage in an applied magnetic
field. It turns out that band structure plays an important role in determining the Hall
resistance. For example, it is possible that the Hall voltage changes sign (i.e. is opposite
to what you would expect based on geometry of the experiment). In this case the
density is interpreted as a ‘hole density’54.

3.6 Magnetism in the tight-binding model I: bound charge response
So far we have considered two descriptions of solids: the free electron model and the
tight binding model. The former is useful when we consider metals, while the latter is
useful for the description of semi-conductors. It is important to remember that the
tight-binding model is in principle complete as it encompasses also the description of
metals55. There is however one problem with both of these descriptions: it is not at all
clear how to explain certain other properties of solids. What about ferromagnetism?
Superconductivity? In the next two chapters we’ll discuss the origin of such emergent
properties. Before we turn our attention to emergent properties of solids however,
we will discuss magnetic properties that are captured within the tight-binding model.
Let’s go back to the magnetic susceptibility. In chapter 2.3, we’ve defined it as

M = χmH, (3.41)
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50 i.e. when σxx = σyy. This is almost always
the case for real systems.

51 Note that the resistivity has ω = 0.

52 This would require energy input!

53 One way to obtain this result is by taking
a voltage delta between two potentials,

∆V = φ2 − φ1.

By definition, the electrostatic potential is

φ = −
∫
C

E · ds.

Since both vectors point in the same direc-
tion, the previous expression for the volt-
age delta becomes

∆V = −
∫ 2

0
Eds +

∫ 1

0
Eds

and therefore

∆V = ED.

Filling in the previously derived electric
field yields the desired expression VH .

54 Remember our discussion of quasiparti-
cles and effective mass in the first chap-
ter. If the dispersion is such that the effec-
tive mass is negative, the convention is to
change the sign of the charge and speak
about holes rather than electrons.

55 The main reason for using the Jellium
model at all is that it is conceptually simple
and mathematically more tractable.



The role of Fermi-Dirac statistics

So far temperature hasn’t played any role in our description of solids; our discussion has effectively focussed on absolute
zero. Since we are mostly concerned with electrons, which are fermions, the thermal statistics is governed by the
Fermi-Dirac distribution,

f (ε) = 1
e β(ε−εF) + 1

,

where β = 1/kBT. When we are dealing with simple metals at finite temperature, the main difference is that thermal
fluctuations allow the electrons to occupy excited states with some probability. Taking kinetic energy as an example, we
find that at finite temperature it is given by,

EK = 2
∫ ∞

0
dερ(ε) f (ε)ε,

rather than the regular expression for kinetic energy:

EK = 2
∫ EF

0
dερ(ε)ε.

A more general statement, applicable beyond linear response would be,

χm = ∂M
∂H

. (3.42)

In the tight-binding approach the material is notmagnetically ordered in the absence of
a magnetic field. Depending on the details there are nowtwo possible responses of the
solid to an applied magnetic field. The first option is that the magnetic susceptibility is
positive, χm > 0. This is called paramagnetism56. In the second case, the susceptibility
is negative and χm < 0, which is referred to as diamagnetism.

To determine the response of a given solid we need to distinguish between the
response of bound and free electrons, just as in the case of the Drude-Lorentz model.
We first discuss bound electrons. This will provide a complicated response already
consisting of both a paramagnetic and diamagnetic response. The reason for separating
between bound and free responses is the following. As you are probably aware, an
isolated free atom has a specific magnetic moment associated with it. This is a result
of the combination of the nuclear moment, the total electron moment and the way
the lowest energy is obtained (e.g. through Hund’s rules). This ‘permanent’ moment
is not changed very much in solids57. For the discussion of the ‘local’ (or bound)
charge response to an applied magnetic field we can again make use of the ‘minimally
substituted’ Hamiltonian,

H = 1
2m

�
p2 − 2q

c
p · A + q

2

c2
A2

�
+ V(r). (3.43)

In the case at hand it helps to split the Hamiltonian into two parts: H0 (the original
Hamiltonian) and an interaction term Hint

58,

H = H0 +Hint, (3.44)

where the two parts are defined as
˚
H0 = p2

2m + V(R)
Hint = − q

mc
p · A + q2

2mc2A
2.

(3.45)

As before we assume we have solved the tight-binding problem defined by H0. We
now make use of the symmetric gauge59 and make the appropriate substitution for the
vector potential corresponding to a magnetic field applied along the z-axis, to obtain

Hint = − q
mc

p · A + q2

2mc2
A2 (3.46)

= − ieħB
2mc

�
x
∂

∂y
− y ∂
∂x

�
+ e

2B2

8mc2
(x2 + y2) (3.47)

= −µBBlz + e
2B2

8mc2
(x2 + y2). (3.48)

56 As in: parallel to the applied magnetic
field.

57 It is not exactly equal to the moment of a
free atom. It depends weakly on the local
environment or symmetry. We will ignore
these details.

58 As you might have guessed we will use this
separation to essentially apply perturba-
tion theory.

59 Where the vector potential is given by

A = 1
2

(−Byx̂ + Bxŷ)

.
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Derivation of the Curie-Weiss relation

One derivation is by taking the eigenvalues for the energy of an atom Ei = gµBBJz with Jz = − J, . . . , J, and

g = 3
2

+ S(S + 1) − L(L + 1)
2 J( J + 1)

.

The partition function in this case is Z =
∑
i e

−βEi , while the Helmholtz free energy F is given by F = −kBT ln Z. For small
B-fields, the partition function Z can be expanded as

Z =
∑

i

�
1 − βEi +

1
2
βE2i − . . .

�
.

Since, in the ground state, the sum runs of 2 J + 1 levels and
∑
Ei =

∑
Jz = 0 since Jz = − J, . . . , J, the resulting expression

for the partition sum is then

Z = 2 J + 1 + 1
2

(gµB βB)2
∑

i

J2z .

This last sum can once again be evaluated as
∑
i J

2
z = 1/3

∑
i| J|2 = 1/3(2 J + 1) J( J + 1). Here, 2 J + 1 is the number of states

and J( J + 1) is the expectation value. Putting things together, we find an expression for the Helmholtz free energy of

F = −kBT ln
[

(2 J + 1)
�
1 + 1

6
(gµB βB)2 J( J + 1)

�]
.

where we have introduced the orbital angular momentum, lz in the last line. The first
term in the last line thus represents a dipole moment like interaction between the
electron and the magnetic field, whereby the electron orbital moment wants to align
itself along the field. The second term is associated with an induced moment that
opposes the field. At this point it is important to observe that the minimal substitution
applies to charged particles, while here we are in fact dealing with electrons. Apart
from a charge electrons have spin. The electron spin itself is a magnetic moment of
the same order of magnitude as the orbital moment and should thus be included as
well. We therefore add a component, Hs = −µ · B, to the Hamiltonian, where the spin
moment is given by, µ = −g0µBs. Combining this with the orbital moment, we find,

Hint = µBB(lz + g0sz) + e
2B2

8mc2
(x2 + y2). (3.49)

This result holds for a single electron. For an atom we find,

Hint = −µBB(L + 2S) + e
2B2

8mc2
Z*∑

i=1
(x2 + y2). (3.50)

The first term corresponds to the paramagnetic term, the second to the diamagnetic
term. In general the first term is larger, however some atoms have L = S = 0, in which
case the diamagnetic term dominates.

It goes too far to work through the full statistical derivation of the relation be-
tween the magnetic moment and the perturbation arising from the application of the
magnetic field. Instead, we quote the following relation60,

χm = − 1
V

∂

∂B

〈
∂Hint

∂B

〉
. (3.51)

We now apply this expression to the diamagnetic contribution of the interaction
Hamiltonian. This gives: 〈

∂Hint

∂B

〉
= e2B

4mc2
Z*

2
3
〈
r2
〉
. (3.52)

Since we are considering the response of electrons bound to an atom under an applied
magnetic field, the result is completely independent of details of the crystal. Under
this approximation the response of a crystal is simply N times the response of a single
atom. Therefore,

χm = − Ne2

6Vmc2
Z*
〈
r2
〉
. (3.53)

For simple monatomic solids where the constituent atoms have filled shells (L = S =
J = 0) this is the final result. This type of magnetic response is known as Larmor
diamagnetism.
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60 Classically, the change in the total internal
energy of the system under applied field is

�Uint =
∫
M · �BdV. From this it follows

that M = 1/V(∂U/∂B).



Figure 3.22: (Left): Density-of-states sepa-
rated for spin-up and spin-down states in the
absence of magnetic field. As we have dis-
cussed, the electronic dispersion (and thus
the DOS) is degenerate in spin. (Middle):
If we apply a magnetic field, the Zeeman
interaction will raise the energy for spins
opposite to the field, while lowering the en-
ergy for spins parallel to the field. (Right):
The electrons will redistribute over spin-up
and spin-down states. As a result the total
energy is lowered and a small magnetization
emerges.

The paramagnetic response is more complicated and the full derivation (see info-
box) is a bit tedious and essentially a statistical physics problem. Nevertheless, the
result is quite famous and known as the Curie-Weiss susceptibility:

χm = nip
2µ2B

3kBT
= C
T
. (3.54)

where ni is the density of ions contributing to the paramagnetic response and p =
g
√
J( J + 1)61. The key feature that distinguishes the Curie-Weiss susceptibility from

other contributions is its 1/T temperature dependence.

3.7 Magnetism in the tight-binding model II: free charge response

Let us now turn to the magnetic susceptibility arising from (nearly) free electrons. One
might expect that this follows exactly the same approach as for the Curie-Weiss law,
replacing the density of ions, ni, with the density of electrons. This turns out to be
wrong and the reason for this can be gleaned from Fig. 3.22. Let’s take for simplicity the
density of states of the free electron gas in three dimensions, it depends on energy as
ρ(E) ∝

√
E for both spin-up and spin-down states62. Due to the degeneracy the spin-up

density exactly cancels the spin-down density and the associated magnetic moment
equals zero. Following the derivation of the Curie-Weiss law, we first considered a single
ion and then used statistical methods to arrive at the susceptibility. We cannot use the
same method here since electrons are fermions and therefore not free to arbitrarily
flip their spin. In fact, looking at the left panel of Fig. 3.22, only a fraction of the total
number of electrons (i.e. those close to the Fermi level) are allowed to flip their spin.

So what happens in response to an applied field? First of all, similar to the Zeeman
effect the degeneracy between spin-up and spin-down states is broken (middle panel
Fig. 3.22). As a result the total energy of the system is increased if the density of spin-up
and spin-down electrons remains equal. The total energy can be lowered however:
if the electrons above EF flip their spin, they can occupy a lower energy state. This
results in a larger occupation of a particular spin-orientation (right panel Fig. 3.22)
and consequently a finite magnetic moment. It is not so complicated to estimate the
magnetic moment. In particular, we have for the number of up-electrons (assuming
spin-up to be parallel to the field for the moment):

61 As mentioned in the beginning of this sec-
tion the end result depends slightly on the
atom and crystal structure involved. For
crystals containing 3d elements (e.g. cop-
per) the expression for p is more accurately
given by p = 2

√
S(S + 1).

62 The spin states in the tight-binding model
are degenerate in energy!
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Landau once said. . .

The derivation for the diamagnetic contribution of free electrons in the magnetic
field is absolutely terrifying. This was even more so the case when it was just
derived and presented by the physicist Lev Landau, somebody who contributed
significantly to the area of magnetism in the first part of the 20th century. The
resulting expression,

χm,dia = −1
3
χm,Pauli,

was initially invoked as a triviality in one of Landau’s papers, but had no additional
information reinforcing it as the correct answer. Nobody seemed to understand
why this was the case initially, but no one dared asking Landau why this expression
had to be true. After all, one does not question information presented in this
manner, especially coming from a superior during in the ‘Russian school’, where
hierarchy was very strict.
After Landau’s death, several physicists took on the task to either confirm or deny
the result. It took them ten years to confirm it.

N+ = 1
2

∫ EF

−µB
dερ(ε + µB) (3.55)

= 1
2

∫ EF+µB

0
dερ(ε) (3.56)

≈ 1
2

∫ EF

0
dερ(ε) + 1

2

∫ EF+µB

EF

ρ(EF) (3.57)

≈ 1
2

∫ EF

0
dερ(ε) + 1

2
µBρ(EF). (3.58)

Similarly, we find N− ≈ 1
2

∫ EF
0 dερ(ε) − 1

2µBρ(EF). This allows us to calculate the magnetic
moment as the difference between spin-up and spin-down electrons,

M = µB(N+ −N−) = µ2Bρ(EF)B = 3Nµ2B
2EF

B. (3.59)

From this expression we can derive the properly volume averaged susceptibility as63,

χm = 3Nµ2B
2VEF

= 3nµ2B
2kBTF

. (3.60)

In the second step we have introduced the Fermi temperature, which is related to the
Fermi energy simply as EF = kBTF. Note that the final result is indeed very similar to
the ionic contribution. We see that instead of the full electron density only a shell of
volume T/TF contributes to the free charge paramagnetic response. The end result is
that the Curie-Weiss temperature dependence is replaced by the Fermi temperature,
TF.

The derivation of the diamagnetic contribution for free electrons is beyond the
scope of this course. We will only denote here the result as quoted in the famous
Landau & Lifschitz,

χm,dia = −1
3
χm,Pauli, (3.61)

with χm,Pauli the paramagnetic contribution of free electrons. This last term is known
as Landau diamagnetism and holds as long as temperature is larger than the corre-
sponding cyclotron frequency scale (i.e. kBT >> ħωc). There are two points to make.
First, the paramagnetic and diamagnetic term come hand in hand: the response of the
free electron gas is therefore paramagnetic. Second, in section 3.3 we found that the
density of states in a magnetic field changes drastically. In particular we showed that
the density of states oscillates in a magnetic field. This has an impact on the magnetic
susceptibility of the free electron gas as well (but not on the ionic contribution!), which
will oscillate with field. The result derived here holds in the limit of low fields.

To conclude, the total magnetic susceptibility of a non-magnetically ordered ma-
terial has several contributions. These are paramagnetic and diamagnetic depending
on whether they are parallel or opposite to the applied magnetic field. There is a
contribution from bound and free electrons. The free electron terms can be combined
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and result in a single paramagnetic contribution. The total magnetization of a material
under an applied magnetic field is thus,

M =
�
nfreeµ

2
B

kBTF˜
Free electrons

+ nip
2µ2B

3kBT–
Paramagnetism

− nie
2

6mc2
Z*
〈
r2
〉�

›
Diamagnetism

B. (3.62)

Depending on the details the magnetization can be positive or negative. In case it
is positive we will find paramagnetism, χm > 0. In case it is negative, diamagnetism
dominates:

χm > 0 paramagnetism
χm < 0 diamagnetism
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EXERCISES III
MAGNETIC PHENOMENA.

In these exercises wewill discuss the properties of particles and non-magnetically orderedmaterials
in magnetic fields.

THE DRUDE MODEL IN MAGNETIC FIELD.

In the previous chapter we have derived the Drude-Lorentz model. In this exercise we
will derive a similar result, but now in the presence of a magnetic field. This result will
form the basis for our discussion of the Hall conductivity in the next chapter. Using
the Lorentz force and extending our previously obtained result, we can derive similar
results for materials in a magnetic field. We start by considering the forces acting on
the electrons

A Write down the equation of motion for a charged particle moving through a magnetic
field in the presence of an oscillating electric field. For simplicity assume Ω0 = 0 (i.e.
we’ll consider the Drude model in magnetic field).

B Assuming a magnetic field applied along the z-direction (i.e. B = B0z), show that this
can be written as64.

(Γ − iω)v = − e
m
E − eB

mc

�
vyx̂ − vxŷ

�
(E3.1)

C Using the definition of the current 65 and the cyclotron frequency, rewrite this as

(Γ − iω)j =
ω2
p

4π
E −ωc

�
jyx̂ − jxŷ

�
. (E3.2)

D Note that on the left hand side we have a three component current j , while on the
right hand side we have only the three component field E. The ẑ-component of the
current is thus,

jz =
ω2
p

4π(Γ − iω)
Ez (E3.3)

This is exactly the Drude conductivity! Derive two relations between the x− and
y−components of the current and electric field and show that these can be solved to
give,

jx =
ω2
p

4π[(Γ − iω)2 +ω2
c ]
[
(Γ − iω)Ex −ωcEy

]
(E3.4)

jy =
ω2
p

4π[(Γ − iω)2 +ω2
c ]
[
ωcEx + (Γ − iω)Ey

]
. (E3.5)

E Show that this can be cast in the form quoted in the main text:[
jx
jy

]
= 	H

[
(Γ − iω) −ωc
ωc (Γ − iω)

] [
Ex
Ey

]
. (E3.6)

with,

	H =
ω2
p

4π[(Γ − iω)2 +ω2
c ]

(E3.7)

QUANTUM OSCILLATIONS

This exercise is adapted from the book by E. Economou (see literature list in Chapter
1)

A The density of states displayed in Fig. 3.21 suggests that there would be a peak at the
Fermi level in the density of states if,

EF = ħωc

(
n + 1

2

)
(E3.8)

Show that this implies that there would be a peak in the density of states whenever,

1
B

= 2πe
cħAF

(
n + 1

2

)
(E3.9)

where AF ≡ πk2F is the maximal cross-section of the Fermi sphere. This implies that
any quantity related to the density of states (resistivity, susceptibility, specific heat) will
oscillate with a period ∆(1/B) = 2πe/cħAF
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64 Remember:

v(t) =
∫
dωv(ω)e−iωt

E(t) =
∫
dωE(ω)e−iωt.

65 i.e. using j = −nev.
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THE PAULI SUSCEPTIBILLITY

This exercise is adapted from the book by C. Kittel (see literature list in Chapter 1) The
Pauli susceptibility (at absolute zero) can be derived by another method. Let

N+ = 1
2
N(1 + �), N− = 1

2
N(1 − �) (E3.10)

be the number of spin-up and spin-down electrons.

A Show that in a magnetic field B, the total energy of a spin up band is given by66,

E+ = E0(1 + �)5/3 − 1
2
N(1 + �)µB (E3.11)

Derive a similar expression for E−.

B Find the groundstate by minimizing the total energy and solve for � (in the limit
� << 1). Show that,

� = 9NµB
20E0

(E3.12)

C Show that the magnetization, defined as,

M = µ
(
N+ −N−) (E3.13)

agrees with Eq. 3.60.

3

66 Hint: remember that the kinetic energy of
a band of free electrons is given by,

EK = 3
5
NEF
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THE HUBBARD MODEL
or the emergence of magnetism from interacting electrons



4.1 Introduction

IN the previous chapter we have dealt with the movement of electrons in ‘simple’
solids under applied magnetic fields. With simple I mean that the electrons are

moving independently from each other through an effective lattice potential. One of
the key equations that we have used,

M = χmH, (4.1)

tells us that in the absence of an applied magnetic field the magnetization in a solid is
zero. This is a bit problematic if you realize that such a thing as iron exists, which of
course is magnetic all by itself. In fact, I tried to be meticulous in stressing a couple
of times that we were considering non-magnetically ordered states. Understanding
the origin of spontaneous magnetism in solids turns out to have its surprises and it
has taken quite a bit of time before people figured out the theoretical framework67.
Lets look back to the first chapter. We started with the Schrödinger equation for a
solid and concluded that it was too complicated. After making what appeared to be
sensible approximations we obtained a differential equation describing the motion
of a particle in some ‘mean-field’ potential. The solution to this differential equation
turned out to be a linear superposition of essentially atomic orbitals with a quantized
energy spectrum. These energy states are spin degenerate68 and therefore the ground
state of the system will never be magnetic. To make this absolutely clear: imagine
that you have a lattice of hydrogen atoms (i.e. one electron per unit cell, only the
1s-orbitals will be occupied). As we have shown in the first chapter these orbitals will
form a single energy band of momentum states. Now we start adding electrons to the
momentum eigenstates in such a way that the energy is minimal. This means that the
first two electrons will occupy the lowest in energy momentum state (i.e. k=0); one of
the electrons with spin-up, one with spin-down. The net magnetization of the solid
after the first two electrons is zero. After we have added the remaining 1023 electrons,
the magnetization will be exactly zero (for a solid with an even number of atoms) or
the magnetization will be exactly one Bohr magneton69 (for an odd number of atoms),
which is a pretty small number on the scale of things (it is in fact about 1021 times too
small).

To conclude, despite all the things that can be calculated within the tight-binding
approach, it does not contain spontaneous magnetism. This chapter explains how you
can get spontaneous magnetism.

4.2 Ferromagnetism & ground states
Let us stay with a concrete example for a moment. At temperatures well above 1040
K, iron is a metal that is well described with the free electron gas. In the absence
of a magnetic field its magnetization would be zero. When we apply a magnetic
field it will display a paramagnetic response with a Curie-Weiss type of behavior70.
It becomes more interesting when we apply a magnetic field and then lower the
temperature below 1040 K. At first nothing seems to change: it is still a metal and it
still has a magnetization. The interesting bit is that when we now slowly decrease the
magnetic field to zero, a finite magnetization will remain. A new state has emerged:
the ferromagnet! It turns out that iron undergoes a phase transition from a metallic
paramagnet to a metallic (or itinerant) ferromagnet. The transition temperature is
known as the Curie temperature. If we further lower the temperature all the way
to absolute zero, iron will remain a ferromagnet. This implies that the real ground
state of iron is in fact ferromagnetic and this goes beyond the standard (tight-binding)
model we have constructed. The only way we can obtain a different groundstate is by
taking a step back and look at the original Hamiltonian,

H = − ħ2

2me

∑

i

∇2
i +Uee(rik) +Uei(ri, Rp) (4.2)

Remember that the first term is the kinetic energy of the electrons, the second term
the electron-electron interaction (Coulomb repulsion) and the last term is the electron-
lattice interaction. The transition temperature of iron is around 1000 K, or equivalently
about 100 meV.The energy scale associated with the electron-phonon interaction is too
small (on the order of 20 meV). The energy associated with the Coulomb interaction is
much larger (typically a few eV), but it is also screened due to the presence of all the
other electrons (see Chapter 2.8). It is therefore the most likely candidate to explain
ferromagnetism. To proceed we will have to make some changes to the approximations
we made. As pointed out in Chapter 1, it is not possible to take the full Coulomb
interaction into account: the problem is simply to hard to solve, even numerically. We

67 And to be honest, we still don’t have a
good theory to understand at which tem-
perature something like iron becomes mag-
netic.

68 Meaning that it costs the same energy to
occupy a given eigenstate with a spin-up
or spin-down electron.

69 µB = 9.27400968(20) · 10−24 J/T.

70 As long as temperature remains larger
than 1040 K.
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will therefore focus on the simplest possible approximation, which is to add a repulsive
term that acts between two electrons if they are on the same atom. This repulsion
together with the fact that electrons are fermions and therefore obey Fermi-Dirac
statistics turns out to be enough to understand magnetic materials. The resulting
model is known as the Hubbard model. Before discussing this model, lets first look at
the simplest possible realization of this model to get some intuition of the role played
by statistics and interactions. This is a toy model for the hydrogen molecule.

4.3 The hydrogen molecule
In the first chapter we have already looked at the model for two interacting hydrogen
atoms. Each hydrogen atom has an individual Hamiltonian Hi corresponding to atom
i = 1, 2,

Hi = − ħ2

2mi
∇2
i + V(ri). (4.3)

To let the hydrogen atoms interact, we added an interaction, t, that coupled the two
atoms. We then solved the Schrödinger equation by solving the matrix equation,[

ε −t
−t ε

] [
c1
c2

]
= E
[
c1
c2

]
(4.4)

Previously, we labeled the original states |1⟩ and |2⟩, but here it will be more
convenient to label the states |A⟩ and |B⟩ and to use numbers to count the electrons.
So, the eigenvalues corresponding to 4.4 are,

E± = ε ± t (4.5)

and the corresponding eigenvectors can be denoted as

|−⟩ = 1√
2

�
|A⟩ + |B⟩

�
and |+⟩ = 1√

2
�
|A⟩ − |B⟩

�
, (4.6)

where |−⟩ en |+⟩ are called respectively the bonding and anti-bonding states. The total
energy of the molecule is of course lower than the energy of the individual atoms71,
since the total energy of the bonding state |−⟩ is lower than the energy of the individual
|A⟩ and |B⟩ states. However, in this consideration we have ignored the electrons
themselves. The question remains what happens when we add electrons to the orbitals.
Now, each hydrogen atom comes with one electron and we can add these to the |±⟩
states, denoting them with numbers. The lowest energy will be obtained if we add
both electrons to the |−⟩ state72. The total wavefunction will then be given by,

|ψ⟩ = |1, −⟩|2, −⟩ = 1
2

�
|1, A⟩ + |1, B⟩

��
|2, A⟩ + |2, B⟩

�
. (4.7)

This wavefunction implies that the electrons will delocalize between the two nuclei:
there is an equal chance of finding electron ‘2’ on atom A (indicated by state |2, A⟩) as
there is of finding it on atom B (since state |2, B⟩ has an equal coefficient in the total
wavefunction). If we expand the product we can regroup the orbitals as follows,

= 1
2

�
|1, A⟩|2, A⟩ + |1, B⟩|2, A⟩ + |1, A⟩|2, B⟩ + |1, B⟩|2, B⟩

�
(4.8)

= 1
2

�
| Ψ I(1, 2)⟩ + | ΨHL(1, 2)⟩

�
. (4.9)

The first term is called the ionic wave function, Ψ I, while the second is the Heitler-
London wave function ΨHL. They are defined as,

| Ψ I(1, 2)⟩ ≡
�
|1, A⟩|2, A⟩ + |1, B⟩|2, B⟩

�
(4.10)

| ΨHL(1, 2)⟩ ≡
�
|1, A⟩|2, B⟩ + |1, B⟩|2, A⟩

�
(4.11)

From this we see that the Heitler-London wave function describes the situation where
two electrons have the highest probability of being on different atoms, while the ionic
wave function describes the situation where the two electrons are both found at the
same atom. Each of the four possibilities occurs with equal likelihood73 and this
cannot be right. We would expect that the situation would be different if we include
the Coulomb repulsion between the two electrons. This repulsion should somehow
lower the energy of the states where the two electrons spend most of their time on
different atoms, or raise the energy of the states where they remain on the same atom.
At the same time, we have also left spin out of the problem and this is expected to
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Figure 4.23: Energy diagram of the solutions
to matrix equation 4.4.

71 This is the reason why natural hydrogen
comes in the form of H2 molecules rather
than in H atoms!

72 This state is fully occupied after this. Note
that one electron should have spin-up and
the other spin-down.

73 Each of the states appearing in 4.8 has the
same coefficient, so the probability for each
state is the same.



play an important role as well. Most importantly, the ionic wavefunction cannot be
occupied if the two electrons are in the same spin state. Or similarly, the fact that
electrons are fermions is inconsistent with the above definition of the Heitler-London
wavefunction. We therefore reevaluate the problem from the very beginning.

We will start by constructing the Hilbert space for this problem. To keep things
insightful we will only consider the 1s-orbitals, which means that we will not have to
worry about angular momentum states in our problem. We would like to take the role
played by spin into account. However, we will explicitly only consider the H2 molecule
and so there really are just 6 states in the entire Hilbert space:

|↑, ↑⟩, |↓, ↓⟩, |↓, ↑⟩, |↑, ↓⟩, |↓↑, 0⟩, |0, ↑↓⟩. (4.12)

Next we need to construct the Hamiltonian. We will do this by considering the
expectation values of different states. First of all, there are states that are equivalent to
the states of the separated Hydrogen atoms.

⟨↑, ↓|H|↑, ↓⟩ = 2ε (4.13)

and its counterpart with the spins reversed. In other words, the expectation value that
a state with exactly one electron occupying each atom (|↑, ↓⟩) remains the same state
(⟨↑, ↓|) after acting on it with the Hamiltonian is 2ε. Similar to the previous problem
we need an interaction that couples the two atoms. We use the same hopping integral,
quantified by a single parameter t. This means

⟨↑, ↓|H|0, ↑↓⟩ = −2t (4.14)

Note the minus sign: the electron is now able to delocalize from its original atom and
this reduces the total kinetic energy. So far we have not changed anything (apart from
considering spin more explicitly). Now comes the crucial part: counterbalancing the
gain in energy due to the delocalization exemplified by the previous expression, it will
cost an energy U for two electrons to occupy the same atom. This can be expressed as,

⟨0, ↑↓|H|0, ↑↓⟩ = 2ε +U. (4.15)

To see this, imagine two hydrogen atoms flying through the universe on a collision
course. The energy associated with each electron is ε, hence for the two atoms the total
energy will be 2ε. At the moment of collision one electron is captured by an atom and
a proton flies of, leaving behind a proton with two electrons. The ‘orbital’ energy is
still energy 2ε, but now the two electrons need to spend a lot of time in each other
vicinity at a cost of the Coulomb potential U. The total energy of this state is thus
2ε +U. Although it is possible to add further interaction, it turns out that this is the
‘bare bones’ model that we need. We therefore set all remaining expectation values
between states equal to zero74.

The expectation values for the Hamiltonian together with a complete set of states
spanning the Hilbert space is sufficient to now write down the problem. The solution
will in general be expressed in terms of the basis states. We therefore expect the solution
to be of the form,

|ψ⟩ = c1|↓, ↑⟩ + c2|↑, ↓⟩ + c3|↑, ↑⟩ + c4|↓, ↓⟩ + c5|↑↓, 0⟩ + c6|0, ↑↓⟩. (4.16)

It now becomes important to specify a certain order for the basis. If we use the order
specified by Eq. 4.16, we can write down the Schrödinger equation in the following
form, 

2ε 0 0 0 −2t −2t
0 2ε 0 0 −2t −2t
0 0 2ε 0 0 0
0 0 0 2ε 0 0
−2t −2t 0 0 2ε +U 0
−2t −2t 0 0 0 2ε +U




c1
c2
c3
c4
c5
c6

 = E


c1
c2
c3
c4
c5
c6

 (4.17)

From here on it is a trivial task to find the solutions: we only need to diagonalize this
6 × 6 matrix. This is a tedious task and I will not bother you with the calculation75.
Instead figure 4.24 summarizes the result. Of course, we find 6 eigenenergies in total.
We can label these energies simply by looking at their values. There are 3 degenerate
eigenenergies with a value 2ε. Since this is exactly the same energy as the total energy
of two non-interacting H atoms, we will call these solutions non-bonding. Then there
are two states that depend on both t and U. The one with lowest energy is also the
groundstate and it has a lower energy than the individual atoms76. This state is called,
for obvious reasons, the bonding state while the highest energy state is known as the

74 An obvious extension of this model would
involve a spin dependent interaction.

Show that..

all the expectation values defined
by Eq. 4.13-4.15 are satisfied by
the Hamiltonian appearing in Eq.
4.17.

75 Note that the matrix in Eq. 4.17 is quite
sparse. It is actually not so difficult to solve
for the Eigenvalues if you use the rule that
you need to find the solutions by setting
det[H] = 0.

76 Note that this is true for any finite t. As
soon as there is a finite overlap between
the orbitals of the individual atoms, it will
be energetically more favorable to form a
molecule!
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Figure 4.24: Eigenenergies of the H2
molecule. We find a bonding solution, 3
degenerate non-bonding solutions and an
anti-bonding solution.

anti-bonding state. The 6th intermediate energy state is less relevant to our discussion
and we will further ignore it.

Now that we have the eigenenergies, we can also calculate the corresponding
eigenfunctions. This is yet another tedious exercise that leads to the following result:

Anti-bonding state 1√
2
�
1 + 4t2

U2

� [�|↓, ↑⟩ + |↑, ↓⟩
�

+ 2t
U

�
|↑↓, 0⟩ + |0, ↑↓⟩

�]
(4.18)

1√
2

�
|↑↓, 0⟩ − |0, ↑↓⟩

�
(4.19)

‘Triplet’ state |↑, ↑⟩, |↓, ↓⟩, 1√
2

�
|↓, ↑⟩ + |↑, ↓⟩

�
(4.20)

‘Singlet’ state 1√
2
�
1 + 4t2

U2

� [�|↓, ↑⟩ − |↑, ↓⟩� + 2t
U

�
|↑↓, 0⟩ + |0, ↑↓⟩

�]
(4.21)

The singlet state has the lowest energy in all of this and should thus be considered
the groundstate. The term ‘singlet’ here refers to the spin part of the wave function.
We can get a bit more insight if we consider for the moment U >> t, in which case the
wavefunction simplifies to,

1√
2
[
|↓, ↑⟩ − |↑, ↓⟩

]
, (4.22)

This is exactly the Heiter-London wavefunction if we split the wavefunction into the
spin and orbital components,

| ΨHL⟩ = 1√
2

�
|↓, ↑⟩ − |↑, ↓⟩

�
(4.23)

= 1√
2

(φA(r1), φB(r2) + φA(r2)φB(r1))
�
|↑⟩|↓⟩ − |↓⟩|↑⟩

�
. (4.24)

we see that the orbital part is exactly Eq. 4.11, while the spin state ensures that the
total wavefunction is anti-symmetric as required for fermionic wavefunctions. From
the last line it is now also clear why this state is called the singlet: the spin part of the
wavefunction corresponds to the S = 0, ms = 0 state.

Independent of U and t there are three solutions with energy 2ε that are called
triplet states. Note that for very large U (or very small t) the singlet and triplet states
are almost degenerate in energy. This is nothing else than saying that a molecule
will not form if the repulsion between the electrons is larger than the gain in kinetic
energy. It is possible, depending on the atomic number of the atoms involved, that
the effective, repulsive interaction is sufficiently large that any additional interaction
will reduce the energy of the triplet relative to the energy of the singlet. Which of the
two states (singlet or triplet) has the lowest energy can be quantified by what is known
as the exchange energy:

2J = ⟨ Ψ s|H| Ψ s⟩ − ⟨ Ψ t|H| Ψ t⟩. (4.25)

The exchange energy is a useful quantity in the sense that it allows us to determine the
magnetic structure of the molecule. If J > 0, the triplet state (with a total spin, S = 1)
will have a lower total energy and thus be the groundstate, while the singlet wins if
J < 077 (with a total spin, S = 0).
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77 In nature it turns out that J < 0 for almost
any binarymolecule. In fact, O2 is the only
example I know where the triplet state has
a lower energy.



To recapitulate: we added the Coulomb interaction and spin78 to the problem and
ended up with the insight that the groundstate wavefunctions (although nominally
the same from the orbital point of view) can become spin polarized (i.e. have a finite
magnetic moment). I hope it is also clear that this very simplified problem (2 electrons,
1 orbital per lattice site and a total of 2 lattice sites) already provides quite a rich detail.
We will now see how the same principle, at work in condensed matter systems with
1023 electrons, results in several differently ordered magnetic states.

4.4 Magnetically ordered states
In this chapter we will consider two distinct magnetically ordered states: the ferromag-
net and the anti-ferromagnet. Conceptually, these states are very similar to the singlet
and triplet states considered above. But what do we mean by magnetic order? In the
previous chapter we have considered the response of a solid to a magnetic field. We
have seen that the magnetization of the solid is proportional to the magnetic field79

M = χB (4.26)

where the susceptibility χ was positive (paramagnetism) or negative (diamagnetism).
A magnetically ordered state is a state in which the average magnetic moment per
unit cell is finite in the absence of a magnetic field. This does not necessarily mean
that the total magnetization, M ≠ 0. This is exemplified in figure 4.25, where the
ferromagnetic groundstate is shown on the left. In this case, the magnetization on
each site i is on average ⟨mi⟩ = n/2, where n counts the total number of electrons per
lattice site80. Since the magnetization is the same on each lattice site this particular
configuration will have a finite total magnetization,

MFM =
∑

i

⟨mi⟩ ≠ 0 (4.27)

In real ferromagnets one typically finds domains where the magnetization takes on a
finite value, but where this value can vary from domain to domain. The right-hand
side of figure 4.25 shows the second case we will consider: the anti-ferromagnet. As you
can guess from the configuration shown, the total magnetization M = 0. Nevertheless,
the state can be characterized as magnetically ordered81. The way to do this is to divide
the lattice into two sub-lattices. As you can see I gave different colors to the lattice sites.
The collection of dark red sites make up one lattice, the collection of light red sites the
other. The lattice of the anti-ferromagnet is called bi-partite. We can now define the
magnetic order parameter as follows:

MAFM =
∑

i∈A
⟨mi⟩ −

∑

i∈B
⟨mi⟩ ≠ 0 (4.28)

Let me reiterate: the expressions for the magnetization defined above do not depend on
any applied magnetic field. Both MFM and MAFM are called ‘order parameter’ because

Figure 4.25: Thetwo magnetically ordered
states that we will consider in this course.
Ferromagnets are characterized by equal
magnetization on all lattice sites, while anti-
ferromagnetic order is characterized by two
sub-lattices (A and B) where the magnetiza-
tion on a given has the opposite sign com-
pared to the other sub-lattice.

78 In fact, it is more appropriate to say that
we have taken fermionic statistics into ac-
count.

79 From here on we use the symbol χ for the
magnetic susceptibility without subscripts.

80 We can therefore have a total spin per lat-
tice site of S = 0, 1/2, 1, 3/2, 2, ....

81 It is easy to ‘see’ from the figure that there
is order in this state. It took quite a long
time to prove that it was so.
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their value can be used as a measure of the presence of long range order. In other
words, if the order parameter is non-zero the state is said to be ordered.

In the next section we will explore how magnetically ordered states come about.
To keep things simple we will work from one single model: the Hubbard model. This
has the advantage that there is only one model to understand. The disadvantage is
that nobody knows how to solve this model, except in some limits and mostly only
numerically. In the next section I will sketch a qualitative picture to explain the
rationale behind the Hubbard model and its solutions. Then in the next section I will
sketch a more quantitative picture based on a mean-field approach.

4.5 The Hubbard model I: a qualitative picture
Given all the good things coming out of the tight-binding theory it cannot be all that
bad as a starting point. So, what I would like to do in this section is to start by using the
intuition we have gained about tight-binding theory and do a ‘gedanken experiment’
to get a feeling for how electron-electron interactions might change the picture. As
with the original model of the H2 molecule from the first chapter, we only consider
the crystal structure and the orbitals when we formulate the tight-binding problem.
This is most evident in the ‘central equation’: the sums run over all lattice vectors and
orbitals. The electrons are only put in as an afterthought. In our gedanken experiment
we will start with an empty lattice of orbitals and fill it up with electrons, but we will
assume that these electrons interact in the same way as in the H2-molecule discussed
in the previous section.

So we start with a situation as shown in Fig. 4.26. We have an empty lattice with
sites labeled with an index i and where we have added an electron to a particular site.
This electron can move about freely and the probability for hopping from site to site is
indicated as γ. The Hamiltonian for this problem can be written as,

H = ε
∑

i

|i ⟩⟨i | + γ
∑

i ,�

|i ⟩⟨i + �|. (4.29)

where the sum over � indicates that we should consider tunneling probabilities to
neighboring lattice sites. We discussed a similar tight-binding problem in Chapter 1,
which we can easily generalize to the two dimensional situation sketched here. Since
we only have a single electron in the problem, we still don’t have to worry about
inter-electron interactions and the dispersion relation is simply given by,

E = E0 + 2V2(cos(kxa) + cos(kya)). (4.30)

As in the previous section I would now like to add electron-electron interactions to see
how the solution changes. However, adding a long-range interaction like the Coulomb
potential makes the problem mathematically intractable on a lattice82. Fortunately,
having many electrons will partly solve this problem. As pointed out in section 2.8 the
bare Coulomb potential in a solid is screened by the presence of the other electrons.
This means that the potential falls off much faster than the usual 1/r. With this idea in
mind John Hubbard proposed a ‘simple’ approximation that allowed him to partially
solve the problem of an infinity of interacting particles. His proposal was to add an
interaction to the Hamiltonian of the form,

Hint =

˚
U If e1 and e2 are in the same orbital
0 If e1 and e2 are in different orbitals

(4.31)

Note that for two electrons to occupy the same orbital requires them to have opposite
spin. This restriction will immediately enforce the Pauli principle (i.e. no two fermions
can occupy the same state). Although this interaction seems a tremendous simplifica-
tion already, it is still a very difficult problem that can only be solved (numerically) in
a few particular instances. To understand how magnetism comes about we will focus
on the simplest incarnation of the Hubbard model, namely the single orbital case on a
2D lattice83. We can express the Hubbard interaction in terms of operators as follows:

Hint = U
∑

i

ni↑ni↓. (4.32)

The operators niσ are known as density operators. They can take on two values, e.g. niσ
= 0,1. It is an easy exercise to verify that this indeed corresponds to the Hamiltonian
proposed by Hubbard. Hint measures the total number of doubly occupied sites and
the energy cost associated with it. The full Hubbard model hamiltonian is thus,

H = ε
∑

i

|i ⟩⟨i | + γ
∑

i ,�

|i ⟩⟨i + �| +U
∑

i

ni↑ni↓. (4.33)
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Figure 4.26: A square lattice with all empty
sites. A single electron is shown that can
move about in this lattice. The probability
for moving is determined by γ.

82 There is an interesting link here to quan-
tum information science. To perform large
scale quantum computations one would
like to work with highly entangled states
(states where many particles are simulta-
neously interacting with each other). The
wavefunction of a solid is exactly such a
state because of the long range interactions.
It is not possible (yet) to prepare solids for
quantum computing. One of the interest-
ing problems that could be tackled with a
quantum computer is the simulation of the
N-particle wavefunction that we are right
now trying to approximate.

83 The 1D case would be ‘simpler’, but al-
ready requires a level of mathematics that
I do not want to touch upon. The 2D case
discussed here applies qualitatively to the
high temperature superconductors, which
is why I chose this version.



Figure 4.27: Three different filling levels of
the Hubbard model. Left: Approximately
1/8th filling where it is still relatively easy
for electrons to move around without occu-
pying the same site. Middle: Close to half
filling, only a few electrons can still move.
Right: Half filling, where it is now impossi-
ble to move an electron without flipping a
spin.

How does adding this term change the solution? One important difference with
previous exercises is that we now explicitly need to take spin into account (as the
interaction is dependent on spin). You can qualitatively see how the solution changes
as follows: start by imagining an empty lattice and add one electron to it. The situation
is exactly that of Fig. 4.26 and the solution will be the tight binding solution. Now
imagine adding an additional electron. In a large (infinite) 2 dimensional lattice this
will hardly make a difference. There are a few configurations (N2 to be precise) that
will each add an energy U to the groundstate energy. I can prevent this by putting both
electrons on the lattice with spin pointing up. To flip the spin of an electron will cost
energy (and requires an additional term in the Hamiltonian or finite temperature).
Therefore it seems that this is the lowest energy configuration84. Lets keep adding
electrons. from here on I will use the word filling to denote the number of electrons
in our hypothetical crystal. Since we have assumed one orbital per lattice site, there
will only be a single tight binding band. This band, as usual, will have 2N available
states associated with it. Therefore having exactly one electron per lattice site is called
half-filling, which corresponds to a density, n=1. Figure 4.27 shows a series of
snapshots with varying number of electrons. As the filling increases the number of
configurations with doubly occupied sites grows quickly. This results in a reduced
mobility for the electrons. However, if we look to the left panel of Fig. 4.27 there is still
plenty of space for the electrons to move and due to them all having parallel spin they
can never occupy the same site. The real groundstate of the Hubbard model at low
filling with large enough interaction U turns out to indeed be a linear superposition
of all realizations of the configuration shown on the left. Since all spins are pointing
in the same direction...this is a ferromagnetic groundstate! This is the key result
of this section: starting from a tight-binding picture we obtain a ferromagnet if we
(non-perturbatively) include a repulsive interaction and the Pauli exclusion principle.

There is more. Let’s add even more electrons. As we approach half filling (middle
and right snapshots) the phase space for electrons tomove becomes smaller and smaller
until exactly at half-filling the electrons can no longer move at all. The only way to
move an electron to a different site is to flip its spin (which costs energy) and then
doubly occupy a site (which costs even more energy). It seems to follow that the image
shown on the right is an exact graphical representation of the groundstate at half
filling85. Not only is this state a ferromagnet, it is also an insulator.

It turns out that there is in fact a little caveat to our gedanken experiment: calcu-
lations will show that our reasoning is correct at low filling. However, at half-filling
the argument is in fact wrong. I have argued so far that by keeping spins parallel,
the potential energy associated with the Coulomb repulsion, U is minimized. This is
correct, however to find the groundstate we should also consider kinetic energy. At
half filling the electrons are localized on lattice sites. This means, according to the
uncertainty principle, that the kinetic energy term ∝ p2 is in fact very large. It turns
out that the anti-ferromagnetic groundstate (shown on the right in Fig. 4.25) has a
lower energy. In the antiferromagnetic state there will be ’virtual’ fluctuations where
an electron moves to a neighboring site and back again. These fluctuations reduce the
kinetic energy as the electrons are allowed to somewhat delocalize. This groundstate
is known as the Mott-Hubbard insulator. To summarize: if we have exactly one elec-
tron per lattice site in a model with on-site repulsive interactions, the Pauli exclusion
principle enforces the groundstate to be an anti-ferromagnetic insulator. This state
is in fact much more interesting than the ‘standard’ tight binding state. It is a highly
correlated or entangled state. In the tight binding picture all that mattered was the
fact that there were bands in energy in which the electrons resided. The quasiparticles
in this system were non-interacting particles and that was it. In the anti-ferromagnetic
groundstate, moving a single electron immediately influences the motion of all its
neighbors. There will be a doubly occupied site and, in the 2D square lattice case,

84 There are some subtleties here that I will
not be able to explain during this course.
If you work through the real calculations,
you will find that the solutions (wavefunc-
tions) are linear superpositions of config-
urations. If U is finite, the coefficient for
a configuration with doubly occupied sites
will be smaller than one without doubly
occupied sites.

85 Note that there is exactly one configura-
tion at half-filling without any doubly oc-
cupied sites. The configuration shown is
thus unique.
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three sites that now feel an empty neighboring site. This will however impact also
on the next nearest neighbors as they cannot fluctuate to the doubly occupied site
anymore. This strongly correlated electron state has different quasiparticles as well.
Not only are there charged excitations (i.e. quasi-electrons similar to the tight binding
quasi-electrons) there are now a completely new set of quasi-particle excitations known
as spin waves. Before discussing all of this in more detail we first sketch the new energy
landscape at half filling. The configurations can be indicated schematically as spin
states, where the lowest energy state is the anti-ferromagnet and is separated from the
first doubly occupied site by an energy U,

Second excited state 2U |↑, 0, ↓↑, ↓, . . . 0, ↑↓⟩ (4.34)
First excited state U |↑, 0, ↓↑, ↓, . . . ↑, ↓⟩ (4.35)

Ground state 0 |↑, ↓, ↑, ↓, . . . ↑, ↓⟩ (4.36)

What is not entirely clear from the preceding discussion is that a band of states will
form around the groundstate (just like a tight binding band). This is indicated in Fig.
4.28 by the red hatched area. Different bands are now separated by energy gaps of
the order U ∝ 2 eV. The origin of the bandwidth of a Hubbard sector lies in the fact
that electrons are still allowed to virtually fluctuate between different sites. Remember
the reason behind the anti-ferromagnetic state being lowest in energy: the electrons
are allowed to virtually fluctuate from site to site. The energy associated with such a
process can be represented graphically as,

|↑, ↓, ↑, . . . ↑, ↓⟩ (4.37)
γ↓

|↑, 0, ↓↑, . . . ↑, ↓⟩ (4.38)
γ↓

|↑, ↓, ↑, . . . ↑, ↓⟩ (4.39)

where the intermediate state has an energy U associated with it. Although such a
fluctuation would cost energy, from a perturbation theory analysis one finds that a
second order process like this, would result in a bandwidth of the order,

J ∝
∣∣∣∣γ2

U

∣∣∣∣ . (4.40)

where J is called the exchange interaction. It can be shown (but we will not do this)
that in the limit of large U the Hamiltonian Eq. 4.33, has a different interpretation
in perturbation theory. Note that in the limit of large U, the exchange interaction
becomes a small number, thereby enabling a perturbative approach. The resulting
model (up to second order in the perturbation) can be cast in the following form:

H = cst − J
∑

i,�
Si · Si+� (4.41)

is known as the Heisenberg model. The groundstate of this model depends on the
sign of J: if J > 0 the groundstate is a ferromagnet, while if J < 0 the groundstate is
anti-ferromagnetic. We leave the discussion of the groundstate and excited states for
the exercises.

To conclude this section we will construct a qualitative phase diagram of the
Hubbard model. We have already worked out two limits. For U = 0, we have the
tight binding model. In Chapter 3 we concluded that this described a paramagnetic
metal. At half filling and large U we have an anti-ferromagnetic insulator. To construct
qualitatively the rest of the phase diagram, we do our gedanken experiment in reverse.
We start with the perfect anti-ferromagnet (Fig. 4.25) and remove one electron. As
you might imagine, this won’t change all too much. Now keep randomly removing
electrons (some with up- and some with down-spin). The result will be a randomly
distributed collection of up and down spins that are free to move about. This sounds
very much like a paramagnetic metal. On the other hand we argued above that this
should be a ferromagnetic metal. As simple as this model seems to be, there is no
real resolution to this difference. The current version of the Hubbard model looks
something like what is sketched in Fig. 4.29. Starting on the left (n=0) we have a
paramagnetic metal. This is just the tight-binding result that survives even infinite U86.
With increasing filling the Hubbard model remains a paramagnetic metal for small
enough U, until the singular limit of n = 1 is reached where the system turns into an
anti-ferromagnetic insulator for even infinitesimally small U. Adding an additional
electron beyond half filling (a case we haven’t yet discussed) turns out to have the same
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Figure 4.28: Schematic representation of
the density of states of the Hubbard model
at half-filling. The groundstate (no doubly
occupied sites) is separated from the first
excited state (one doubly occupied site) by
an energy U.

86 For the nearly trivial reason that a sin-
gle electron cannot doubly occupy a lattice
site.



Figure 4.29: The approximate phase dia-
gram of the Hubbard model as function of
carrier concentration (or filling). The den-
sity is defined as nr. of electrons per lattice
sites.

effect as removing one electron87. Close to half filling for large enough U it is well
established that the Hubbard model remains anti-ferromagnetic.

The debate about the presence of ferromagnetism is still an active field of research,
but it appears that it strongly depends on the details of parameter choices and the
lattice structure. Another actively researched question is whether the Hubbard model
can ‘spontaneously’ lead to superconductivity. This is an interesting question, because
it is widely believed that the single band, square lattice Hubbard model (or a close
cousin with superexchange interactions) is the basic model describing the cuprate
high temperature superconductors. For those of you wondering why these questions
haven’t been resolved yet: away from integer filling it requires intensive numerical
computations to find the groundstate energies.

There is one last remark about the phase diagram of the Hubbard model: it is
probably the first ‘zero-temperature’ phase diagram you have encountered. This
is actually quite different from ‘conventional’ phase transitions in which the system
moves from one phase to another phase as temperature increases (e.g. ice to water). In
these phase transitions, temperature fluctuations drive the transition. This is not the
case in zero-temperature phase transitions where it is really the quantum fluctuations
that drive the transition. The strength of the quantum fluctuations is controlled by
the parameter(s) driving the transition (density and Coulomb U in our case). There
are many neat effects related to these quantum phase transitions.

4.6 The Hubbard model II: a more quantitative picture

It is possible to establish the qualitative picture presented in the previous section more
rigorously. However, the math involved is too advanced to present here. It requires
so-called ‘second-quantization’ techniques that will be introduced in a later course.

However....
You do have some of the relevant mathematical tools to do a somewhat less sophis-

ticated approach. The description we will introduce here is not wrong, it is just not
very accurate88. Before continuing, lets summarize a few points:

• As soon as we add Coulomb repulsion, correlations between electrons become
important.

• Due to the Pauli principle the electron spins will align (anti-)parallel.

• We end up with either paramagnetism, ferromagnetism or anti-ferromagnetism.

At this point it is good to note that there are essentially two types of ferromagnetism:
local ferromagnetism and itinerant ferromagnetism. The former arises when there
are atoms in the unit cell in a high spin state (remember Hund’s rules!). We will be
more interested in the latter however. Itinerant ferromagnets are metals like Fe, Co
and Ni. Clearly, because they are metals there is a large number of nearly free electrons
that are completely delocalized. It is therefore somewhat difficult to understand how
one should relate this to the definition of an average magnetic moment per unit cell
(fig. 4.25). In this section we will make an approximation to the Hubbard model that
will set the stage for working out the origin of ferromagnetism in the next section.
The approach is known as the mean-field approximation and it is in fact similar in
spirit to the single-particle approximation explained in the first chapter. Let’s begin by

87 There is a larger cost associated with
adding an electron though!

88 I am not sure how to state the problem.
What we are about to discuss is not wrong,
it just lacks the quantitativeness of the
tight-binding model.
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recalling the definition of the Hubbard model.

H = ε
∑

i

|i ⟩⟨i | + γ
∑

i ,δ

|i ⟩⟨i + δ| +U
∑

i

ni↑ni↓. (4.42)

The difference with tight-binding is as explained above in the last term. The reason it is
a complicated term is that it couples two electrons together (one with spin up and one
with spin down). Wouldn’t life be easier if these electrons were ‘decoupled’? Remember
that this was in fact how we achieved the tight binding solution in the first place. We
assumed that the electron were moving in an effective potential field resulting from
the presence of all other atoms and electrons. The mean field approximation is made
in similar spirit; it decouples products of operators. A general formulation of the mean
field approximation is as follows. We redefine an arbitrary operator as,

O = ⟨O⟩ + �O. (4.43)

The first term is the average expectation value of the operator, while the latter term
are the fluctuations around this expectation value. The first term is a number, while
the last term is still an operator. We can always write an operator like this, but we
lack a mathematical form for the fluctuation term. Nevertheless, the idea is that the
mean-field approximation ‘works’ if the fluctuations around the average (mean) value
(field) of the operator ⟨O⟩ are small. To see how this helps, we calculate the product of
two operators. We find,

OO = ⟨O⟩⟨O⟩ + ⟨O⟩�O + ⟨O⟩�O + �O�O. (4.44)

This where the approximation is made. Since the fluctuations are small, terms that are
second order in the fluctuations (i.e. the last term) can be neglected and we are left
with,

OO ≈ ⟨O⟩⟨O⟩ + ⟨O⟩�O + ⟨O⟩�O (4.45)
This appears not to help toomuch, since we are now left with a number (first term) and
then two terms containing an unknown, undefined operator. The trick is to eliminate
this operator. This can be achieved making use of Eq. 4.43, while noting that:

�O = O − ⟨O⟩ (4.46)

If we replace the fluctuation terms we obtain,

OO = ⟨O⟩O + O⟨O⟩ − ⟨O⟩⟨O⟩ (4.47)

And that is the magic of the mean-field approximation. By throwing away a term
containing the square of the fluctuations, we have decoupled a product of operators
into an expression that contains only a single operators (multiplied by its expectation
value).

We can follow the same steps for the last term of Eq. 4.42 and find,

ni,↑ni,↓ ≈ ⟨ni,↓⟩ni,↑ + ni,↓⟨ni,↑⟩ − ⟨ni,↓⟩⟨ni,↑⟩. (4.48)

To gain some more physical insight in this result we now introducetwo new quantities:

⟨n⟩ = ⟨ni,↓⟩ + ⟨ni,↑⟩ (4.49)
⟨m⟩ = ⟨ni,↓⟩ − ⟨ni,↑⟩ (4.50)

The first line is the average electron density per lattice site, while the second line is the
average magnetization. We can express the spin-up and spin-down densities in terms
of these average values,

⟨ni,↓⟩ = ⟨n⟩ + ⟨m⟩
2

, ⟨ni,↑⟩ = ⟨n⟩ − ⟨m⟩
2

. (4.51)

Putting it all together we have,

U
∑

i

ni,↑ni,↓ =
∑

i

ε↑ni,↑ + ni,↓ε↓ −
U

4
(⟨n⟩2 − ⟨m⟩2) (4.52)

where I have introduced two new quantities,

ε↑,↓ = U
2

(⟨n⟩ ∓ ⟨m⟩) (4.53)

The last step is to express the remaining density operators in terms of the basis states
|i, σ⟩89,

ni,σ = |i, σ⟩ ⟨i, σ| (4.54)
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Show that..

Eq. 4.48 follows from a mean-
field approximation of the Hub-
bard Hamiltonian.

Show that..

Eq. 4.52 follows from the mean
field expression for the operators
(Eq. 4.48) together with the defi-
nitions of the average density and
magnetization.

89 The density operator just counts the num-
ber of electrons per site.



This allows us to finally write the mean-field Hubbard Hamiltonian as,

H =
∑

i ,σ

ε̃σ|i ⟩⟨i | + γ
∑

i ,δ,σ

|i , σ⟩⟨i + δ, σ| − U
4

(⟨n⟩2 − ⟨m⟩2) (4.55)

with ε̃σ = ε + εσ. This looks exactly like our original tight-binding Hamiltonian! The
only difference is in the fact that we now have an added spin label. There is however no
term coupling the two spins (as in the original Hubbard Hamiltonian) and therefore
we can solve the problem for spin-up and spin-down electrons separately. This will
result in energy bands and all the rest of it. We can in principle again define different
limits (weak-binding vs. tight-binding) and use all the terminology we developed when
discussing single-electron problems (e.g. Fermi level, density of states etc). There is a
‘but’: the energies for spin-up and spin-down, Eq. 4.53, depend on the average density
and magnetization and we do not know these values yet. We still need to solve this
problem self-consistently. Finding a self-consistent solution is typically done as follows.
One starts by assuming a value for the average density and magnetization. These values
are used to calculate the groundstate energy and corresponding wave functions. The
latter are then used to calculate new values for the average density and magnetization.
These are then used to calculate a new groundstate energy and corresponding wave
functions. This loop is repeated until the densities and energy don’t change upon
repeating the loop.

To determine the phase diagram and the boundaries between the different mag-
netically ordered phases is now a matter of calculation. You pick a value of U and
a certain filling (this is done by imposing a constraint on the total density and mag-
netization) and work through the self-consistency loop. This is a rather complicated
scheme that we will not pursue. Instead, we will use our mean-field Hamiltonian to
derive a condition for the emergence of ferromagnetism.

4.7 The Stoner criterion
In this section we will derive a condition that explains when (and hopefully also
why) ferromagnetism appears. For what follows it will help to read the discussion on
paramagnetism in section 3.7 again. In that case we considered nearly free electrons in
a magnetic field. We found that the Zeeman interaction was responsible for creating
an energy difference between spin-up and spin-down electrons, resulting in a higher
density of states at the Fermi level for one of the two spin species. In the presence
of Coulomb repulsion something similar happens and we can use our mean-field
Hamiltonian to make this insightful.

The idea is simple: we need to find a condition such that our mean-field Hamilto-
nian,

H = H↑ +H↓ −
U

4
�
⟨n⟩2 − ⟨m⟩2

�
, (4.56)

produces a finite average magnetization. This condition can be derived by realizing
that for finite magnetization to appear, such a state must have a lower energy than
the state with zero average magnetization. The average magnetization can be
expressed in terms of the density of states as follows. When we integrate the density of
states up to the Fermi level, we obtain the total charge density. By splitting the density
of states in a spin-up and a spin-down component, we can thus measure the density
of electrons with spin-up and with spin-down. To have a finite magnetization thus
means that ⟨m⟩ = n↑ − n↓ should be non-zero. Referring to Fig. 4.30, this can happen
only if more electrons occupy a particular spin state, which results in a slightly shifted
Fermi level for this spin state. We define the difference between the two Fermi levels
as 2� ≡ EF,↑ − EF,↓. This means that we can express the magnetization as,

⟨m⟩ = n↑ − n↓ = 1
V

[∫ εF+�

0
ρ↑(ε)dε −

∫ εF−�

0
ρ↓(ε)dε

]
(4.57)

Of course, this will never happen in the nearly free electron model. The electrons with
spin-up state in Fig. 4.30 have a higher energy than what they would have if they would
occupy spin-down states; the magnetization will always be zero. Let’s see how this
works out in the mean-field Hubbard model.

Since the density of states is approximately constant about the Fermi level, we
assume for simplicity that ρσ(ε) ≈ ρσ(εF). The two integrals can then be combined into
one since ρ↑(εF) = ρ↓(εF). The magnetization is thus,

⟨m⟩ = 1
V

∫ εF+�

εF−�
ρ(ε)dε ≈ 1

V
· ρ(εF)

∫ εF+�

εF−�
dε = 1

V
· 2ρ(εF)�. (4.58)

Figure 4.30: Density of states for spin-up
and spin-down electrons in the absence (left)
and presence (right) of a Coulomb repulsion
U. We want to derive a condition such that
some electrons spontaneously flip their spin,
resulting in an increase of spin-density. � in-
dicates the energy cost associated with this.
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The total magnetization, ⟨m⟩ = 2ρ(εF)�, will thus be finite if a minimization of the
total energy leads to a finite �. To see when this happens requires us to calculate the
total energy, which can be done making use of the density of states as well (see also
exercise 4 in Ch. 1)

The total energy is defined as

E = −U
4

(⟨n⟩2 − ⟨m⟩2) + 2
∫ εF

0
ε̃ρ(ε)dε. (4.59)

We will first evaluate the integral, which can be done in the same fashion as the
previous integral90. We split the integral in a spin-up and spin-down component and
then assume there is an imbalance between the two populations. The energy per state
is given by the energy eigenvalues, ε̃σ of the mean field Hamiltonian91. This gives,

E =
∫ εF+�

0
(ε + ε↑)ρ↑(ε)dε +

∫ εF−�

0
(ε + ε↓)ρ↓(ε)dε (4.60)

=
∫ εF

0

[
(ε + ε↑)ρ↑(ε) + (ε + ε↓)ρ↓(ε)

]
dε

+
∫ εF+�

εF

(ε + ε↑)ρ↑(ε)dε −
∫ εF

εF−�
(ε + ε↓)ρ↓(ε)dε. (4.61)

The first integral can be easily evaluated and gives,

= E0 + U
4
⟨n⟩2 (4.62)

+
∫ εF+�

εF

(ε + ε↑)ρ↑(ε)dε −
∫ εF

εF−�
(ε + ε↓)ρ↓(ε)dε. (4.63)

where E0 is the total energy of the system without interactions. To calculate the remain-
ing two integrals we again make the approximation that the density of states about
the Fermi level is constant. We find for the integral with spin-up,∫ εF+�

εF

(ε + ε↑)ρ↑(ε)dε ≈ ρ(εF)
∫ εF+�

εF

(ε + ε↑)dε

= ρ(εF)
[
εF� + �2

2
+ ε↑�

]
(4.64)

and similarly ∫ εF

εF−�
(ε + ε↓)ρ↓(ε)dε ≈ ρ(εF)

[
εF� −

�2

2
+ ε↓�

]
. (4.65)

If we now add everything together, using the definition of ε↑ and ε↓ and reintroducing
the constant energy term, we find that the total energy is given by,

E = E0 + U
4
⟨n⟩2 − U

4
(⟨n⟩2 − ⟨m⟩2) + ρ(εF)

[
�2 + �(ε↑ − ε↓)

]
(4.66)

= E0 + U
4
⟨m⟩2 + ρ(εF)

[
�2 − �U⟨m⟩

]
. (4.67)

The last step is to realize that we still need to fulfill the self-consistency condition. That
is, we can make use of our expression for the magnetization, Eq. 4.58, to eliminate �
from the total energy. This gives,

E = E0 + U
4
⟨m⟩2 + ρ(εF)

[
⟨m⟩2

4ρ2(εF)
− ⟨m⟩
2ρ(εF)

U⟨m⟩
]
, (4.68)

which can be simplified to,

E = E0 + ⟨m⟩2

4

[
1

ρ(εF)
−U
]
, (4.69)

And that is our final result. The first term in Eq. 4.69 is the groundstate energy of
the nearly free electron model. In chapter 3 we have seen that this groundstate is a
paramagnetic metal. The second term is derived from the mean-field approximation
of the Hubbard interaction (i.e. a remaining Coulomb interaction between electrons).
Note that the total energy will be lowered if,

⟨m⟩2

4

[
1

ρ(εF)
−U
]
< 0 (4.70)
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90 We will ‘forget’ the constant for a moment
to ease writing. We don’t neglect it though!
It will be reinserted at the end.

91 The result presented here is general, but
assume γ = 0 for the moment.



which is fulfilled if,
ρ(εF)U > 1. (4.71)

Stoner was the first to derive this result and he realized that this provided a
criterion for ferromagnetism to emerge in a metal, hence the name ‘Stoner criterion’.
If Eq. 4.71 is satisfied the system can gain some potential energy by spontaneously
rearranging some spins, resulting in a spontaneous magnetization (i.e. in the absence
of amagnetic field). So what determines whether amaterial is magnetic or not? It turns
out that in most metals the screened Coulomb repulsion (our Hubbard interaction)
is approximately equally large. For example Cu and Fe are neighbors in the periodic
table, both have approximately equal numbers of electrons, both are metallic etc. So
U is approximately the same in both cases (and also quite small). The reason that Fe
is magnetic and Cu not is therefore not related to the strength of the interaction U.
Figure 4.31 shows calculated spectra for the density of states of three simple metallic
ferromagnets (Fe, Co and Ni). We see in each case a large peak in the DOS right at
the Fermi level. The idea that a large density of states at the Fermi energy results in
ferromagnetism is in hindsight understandable. Imagine that there is a small, but
non-negligible potential energy cost for two electrons being close together. If the
density of states is large at the Fermi energy, it will cost very little energy for many
electrons to occupy a state with opposite spin. As a result of having on average parallel
spin (finite magnetization) these electrons can no longer come close to each other
(occupy the same quantum state) and this eventually lowers the total energy. The key
is therefore in having a large phase space at low energy cost.

4.8 The Heisenberg model
At the end of section 4.5 I explained how the Hubbard model in the limit of strong
interactions can be mapped to the Heisenberg model. The mathematical framework
behind this is a bit more advanced and we will not derive it92. Instead we will focus
our attention on the Heisenberg model itself. Keep in mind that this is a good model
for materials where the Coulomb repulsion is strong (which means high free carrier
density together with small dielectric function). The Hamiltonian is simple to write
down in full generality,

H = −
∑

i, j
Ji jSi · S j. (4.72)

where Ji j is an exchange interaction and the S are spin operators93. The lattice can
be chosen to have D dimensions and the sum over �, which couples different lattice
sites as in the tight binding model, can run over as many neighbors as one wishes.
The Heisenberg model is again one of those models that does not have a solution in
generality. Nevertheless, several solutions are known for particular versions of the
model. Let’s consider two simple examples to focus the discussion a bit. The first model
is the Heisenberg model on a 1D chain with nearest neighbor spin interactions only.
This simplifies the Heisenberg Hamiltonian to,

H1D = − J
∑

i

Si · Si+1. (4.73)

The second model we will consider is the Ising model in 1D on a chain. This model is a
simplification of Eq. 4.73 where the x, y- components of the spin operator are ignored,

H = − J
∑

i

Sz,iSz,i+1 (4.74)

It is relatively straightforward to understand the solution of these two models when
J > 0. The groundstate energy (or the expectation value of H1D) will be minimized
when all spins are pointing in the same direction (since the inner-product will be
largest in that case). Since we are free to choose the spin direction for H1D, we can
have them all pointing along the z-direction. This shows you then that the groundstate
energy of both the 1D Heisenberg and Ising models are the same (Eg = − JNS2 to be
precise). Since the energy is minimal when all spins are pointing in the same direction,
both models have a ferromagnetic groundstate at zero temperature. It is also relatively
straightforward to determine the first excited state in this case (see exercise 2). In the
Ising case, the first excited state is exactly 2 JS higher in energy94. Note that this is the
energy cost associated with changing the spin on a given site by S = 1. The excited states
of the 1D Heisenberg model are more interesting however. The difference between
the groundstate and an excited state are indicated in Fig. 4.32. In the Ising model the
spins cannot tilt in the x, y-direction and therefore it is necessary to flip the spin by
one quantum on a given site. This means that it will always cost 2 JS, no matter where

Figure 4.31: Density of states of Fe, Co and
Ni. In each case we find a large density of
states at the Fermi level. This is the driving
force behind ferromagnetism.

92 For those interested: it requires a so-called
Hubbard-Stratanovich transformation in
which you define the spin-operators as ex-
ponentials of the basis states. By applying
this transformation and solving for a set
of coefficients, you can work out a trans-
formed Hamiltonian such that it is diag-
onal. The diagonal elements then tell you
the spectrum of this Hamiltonian.

93 In the exercises you will refresh your mem-
ory of their properties.

94 This is the energy cost of flipping a single
spin. Since the interactions are identical
along the chain it doesn’t matter where you
flip the spin (except if the chain is finite!
Then it will cost less energy to flip a spin at
the very end.). See exercise 2 for details.
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Figure 4.32: Top: snapshot of the ground-
state for the case J > 0. Note that all spins
are pointing up. Bottom: Snapshot (exagger-
ated) of an excited state. The spin on every
site is slightly tilted away from the z-axis in a
coherent fashion, such that the energy cost
of flipping a spin is minimized.

you put the spin. In the Heisenberg model on the other hand, flipping a spin on a
given site still costs the same, but we can now also choose to flip the spin ‘halfway’
towards the x-axis on one site and halfway on a neighboring site. The change in spin
is still S = 1, but it will only be a fraction of the energy compared to the Ising model
because the two spins that are half flipped can still have their spins parallel. Taking
this idea a step further (again, see exercise 2) we can make a total spin-flip S = 1 also by
tilting the spin on all sites ever so little away from the z-axis. This will then hardly cost
any energy and one says that the spin-flip ‘delocalizes’: it is spread out over the entire
chain. It turns out that a whole energy band of excitations is possible that can be
characterized as having different frequencies (or better wavelengths). These solutions
are called spinwaves or magnons. Their dispersion (Fig. 4.33) is given by,

E = − JNS2 + 2 JS [1 − cos (ka)] (4.75)

where a is the lattice spacing. There are some interesting analogies to make with how
band electrons behave in solids. In the case of electrons (Chapter 1) we had particles in
free space that turned into quasi-particles as a result of a periodic potential. We ended
up with band electrons characterized by a momentum k. In the current case we start
with spins that, as soon as a periodic interaction is switched on (lattice + exchange
interaction), turn into spin waves. They can also be characterized by a similar quantum
number k. In fact, even the dispersion of these quasi-particles is the same (a cosine
band). There are also differences. First of all, the spin waves have S = 1 and are therefore
bosonic quasi-particles. Moreover, there is not really a particle that we call ‘spin’ that
carries a spin moment of S = 1. The spin waves are therefore more like the phonons:
they are an emergent property of the solid. Since the spin waves are bosonic, they
all condense into the k = 0 state at T=0. This has to be of course: the groundstate is
the perfect ferromagnet and so at T=0 there can be no excited spin wave. In the next
section we will see that the thermal occupation of spin waves results in fluctuations of
the ferromagnetic order parameter (the magnetization M). These fluctuations increase
with temperature until, at a critical temperature, the ferromagnetic state is completely
destroyed and we are left with a paramagnet. In the subsequent sections we will derive
the temperature dependence of the magnetization and see how the spin waves play
their role in the ferromagnetic phase transition.

4.9 Magnetization as a function of temperature

In the previous section we have seen that the excited states of the Heisenberg model
can be described by spin waves that follow Bose-Einstein statistics. This means that
with increasing temperature more and more excited states will get occupied. Thermal
fluctuations of the magnetic order translate to ‘vibrations’ of the spin moments, just
like thermal fluctuations of the crystalline order translate to vibrations of the atomic
positions. Let me stress this once more: spin waves and lattice vibrations are an
emergent property that appears in a solid as a result of periodicity; the origin of spin
waves and lattice vibrations is the same.
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In a real solid at zero temperature there will be a certain magnetization per unit
cell, corresponding to a number of times a spin-1/2 moment. These moments will all
be aligned along a certain direction. Since the total magnetization of the solid is given
by the sum over all unit cells, the total magnetization will be as large as possible at
zero temperature. If we now turn on and slowly increase temperature, more and more
spin waves will be excited according to the Bose-Einstein distribution. The number of
spin waves with momentum k that is excited at a given temperature is given by,

⟨nk⟩ = 1
eε/kBT − 1

. (4.76)

where ε = ħω and kB is Boltzmann’s constant. Since each spin wave corresponds with
an excited state that carries a certain moment, the total or average magnetization
decreases with temperature. We can calculate the low temperature magnetization as
follows.

At low temperature we can approximate the spin wave dispersion by expanding
the cosine up to second order,

ħω = JSa2k2. (4.77)

Now, we need to estimate the magnetization per unit cell. This is of course given by
the expectation value of the local spin moment,

⟨mi⟩ = −gµB⟨Si,z⟩ (4.78)

We can express this in terms of the occupation number of spin waves by realizing that
the total spin S will be reduced by the average number of excited states per unit cell,

⟨mi⟩ = −gµB
�
S − ⟨ni⟩

�
(4.79)

Note that the correct quantum number for a spin wave is its momentum k (and thus
not its position). We therefore do not have an easy expression for ⟨ni⟩95. However, we
do know the occupation number of spin waves with a given momentum k for a given
temperature. Therefore, if we sum over all k-states and then divide by the number of
unit cells N, we get the average density per unit cell96,

⟨ni⟩ = 1
N

∑

k

⟨nk⟩. (4.80)

This sum can be converted to an integral as follows,
∑

k

. . . →
V

(2π)3

∫ ∞

0
4πk2 . . . dk. (4.81)

The integral is most easily performed by changing variables to energy, ε. To do this we
make use of the approximate dispersion relation, Eq. 4.77, and its derivative97,

dω

dk
= 2 JSa2k and therefore dk = dω

2 JSa2k
. (4.82)

Substituting variables thus gives,

⟨ni⟩ = 1
N

∑

k

⟨nk⟩

= 1
N

V

(2π)3

∫ ∞

0
4π ω

JSa2
dω

2 JSa2k
⟨nk⟩

= 1
N

V

(2π)3

∫ ∞

0
4π ω

JSa2
dω

2 JSa2

√
JSa2

ω
⟨nk⟩

= V

4π2N

∫ ∞

0

√
ω

JSa2
√
JSa2

⟨nk⟩dω, (4.83)

Next we substitute the Bose-Einstein distribution and collect all factors. This gives,

= V

4π2a3N

1
( JS)3/2

∫ ∞

0

√
ω

eω/kBT − 1
dω. (4.84)

Now note that the volume V in the numerator of the pre-factor cancels with N times
the volume of the unit cell (a3). By making the substitution, x = ω/kBT98 we find

⟨ni⟩ = 1
4π2

�
kBT

JS

�3/2 ∫ ∞

0

√
x

ex − 1
dx (4.85)

95 Indeed, the low momentum states are com-
pletely delocalized over the entire chain
since λ → ∞ for k → 0.

96 Note that we assume here a finite chain,
while we started with the excited states of
an infinite one. In general this will work
out correctly if we take the limit of N →
∞ at the end of the calculation. In this
particular case, the final result will turn
out not to depend on N.

97 In what follows I will set ħ = 1. The final
result turns out not to depend on ħ, so this
is just a means to simplify the expressions
along the way.

98 Since x = ω/kBT and therefore ω = xkBT,
the relation between the infinitesimals dω
and dx is dω = kBTdx.
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The last integral is a standard integral that evaluates to∫ ∞

0

√
x

ex − 1
dx = 1

2
√
π

(
3
2

)
(4.86)

The zeta function can be looked up in a table and so we find,

⟨ni⟩ ≈ 0.0586
�
kBT

JS

�3/2

. (4.87)

The total magnetization at low temperature is thus given by

M = N⟨mi⟩
V

= −NgµBS
V

�
1 − ⟨ni⟩

S

�
, (4.88)

The pre-factor is of course the magnetization at zero temperature and so we have,

M(T) = M(0)

[
1 − 0.0586

S

�
kBT

JS

�3/2
]
. (4.89)

which is known as Bloch’s law. In principle this expression already tells you that at suf-
ficiently high temperature the magnetization will disappear. The critical temperature
obtained from this expression is however incorrect: the approximation of the cosine
dispersion is not valid at higher temperatures. It is hard to indicate exactly when this
approximation breaks down. At intermediate temperatures there all kinds of detailed
processes that we have ignored in our treatment. We can however make a more exact
prediction of what happens near the phase transition. This will be the topic of the
next section.

4.10 The ferromagnetic phase transition in themean-field approximation
Close to the phase transition there will be strong fluctuations of the local magnetic
moments due to thermal energy. Since at high temperature states with many different
k’s will be excited there will be fluctuations of the magnetization on all lengths scales.
It is this regime that it makes some sense to apply the mean-field approximation. After
all, viewed from a single unit cell there will be an effective magnetic field B that will be
more or less static in time, which will average out to zero right at the phase transition
itself.

We will follow the recipe of section 4.6. Our Heisenberg Hamiltonian is a product
of two operators and so we find,

H = − J
∑

i, j
Si · S j (4.90)

≈ − J
∑

i, j

[
Si · ⟨S j⟩ + ⟨Si⟩ · S j + ⟨Si⟩ · ⟨S j⟩

]
. (4.91)

We ignore the last term as it gives only an offset to the final energy. Also note that
the average value of the spin operator on site i is of course equivalent to the value of
the spin operator on site j (at least for ferromagnetic interactions). We can therefore
write,

H ≈ −2 J
∑

i, j
Si · ⟨S j⟩. (4.92)

It is at this point not difficult to also include a real applied magnetic field B. This adds
a term gµBB to the Hamiltonian. Now note that the sum over j can be interpreted as
an effective magnetic field acting on the spin at site i. In other words,

H = −
∑

i

Si

[
∑

j

2 J⟨S j⟩ − gµBB
]
. (4.93)

We can now interpret the term in brackets as a total effective field acting on the spin
at site i by recasting the Hamiltonian in the following form99,

H = gµB
∑

i

Si · Be f f . (4.94)

where,

Beff = −
[
2 J
gµB

∑

j

〈
S j

〉
− B
]
. (4.95)
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the Heisenberg Hamiltonian can
be approximated in mean-field by
Eq. 4.91

99 Compare this with the Hamiltonian in
paragraph 3.6.



We can also express the average spin moment in terms of the magnetization per
unit cell,

Beff = B + J
∑

j

2⟨m j⟩
(gµB)2

. (4.96)

so that the Hamiltonian is a function of the magnetization. At the same time, the
magnetization is determined by the free energy (see chapter 3),

⟨mi⟩ = − ∂F

∂Beff
. (4.97)

We’ll first need to calculate the free energy,

F = −kBT ln
(
∑

m

e
− Em
kBT

)
(4.98)

where the energy eigenvalues are the standard Zeeman energy levels,

Em = gµBBe f fms (4.99)

where ms = −S...S is the magnetic quantum number100. If we consider small fields or
high temperature, the exponential in Eq. 4.98 can be expanded as101,

e−βEm = 1 − βEm + 1
2
β2E2m − . . . , (4.100)

To calculate the free energy we need to sum over all 2S + 1 energy eigenvalues. Note
that since the quantum number ms runs from −S to +S all odd powers of the energy
eigenvalues sum to zero. We therefore have up to second order,

∑

m

1 + 1
2
β2E2m = (2S + 1) + (2S + 1)1

2
(
βgµBBe f f

)2 1
3
S(S + 1) (4.101)

where I have used the fact that S2z = S2/3. The free energy is thus,

F ≈ −kBT ln
(

(2S + 1)(1 + 1
6
(
βgµBBe f f

)2
S(S + 1)

)
= −kBT ln (2S + 1) − kBT ln

(
1 + 1

6
(
βgµBBe f f

)2
S(S + 1)

)
(4.102)

From which the magnetization follows using Eq. 4.97,

⟨mi⟩ = kBT
1
3 (gµB β)2BeffS(S + 1)

1 + 1
6 (gµB βBeff )2S(S + 1)

. (4.103)

We can ignore the term in the denominator proportional to B2eff (since we are working
in the small field limit). Therefore,

⟨mi⟩ = kBT
1
3

(gµB β)2BeffS(S + 1). (4.104)

If we now define p′ ≡ g
√
S(S + 1) we have,

⟨mi⟩ = (p′µB)2Beff
3kBT

. (4.105)

This apparently simple result is exactly the inverse temperature Curie-Weiss law that
we obtained in section 3.6. Apparently, because in the current case we have an effective

magnetic field, rather than an appliedmagnetic field and the effective field still depends
on the magnetization. Remember: the last step in any mean-field approximation is to
solve for the ‘mean-field’ (in this case the magnetization) self-consistently. In the case
at hand it brings us to the ferromagnetic phase transition. Let’s combine Eq. 4.96 with
Eq. 4.105:

⟨mi⟩ = (p′µB)2

3kBT

[
B + 2

(gµB)2
∑

j

⟨m j⟩ J

]
(4.106)

Now we note that in a ferromagnet, translational invariance requires that ⟨m j⟩ = ⟨mi⟩,

⟨mi⟩ = (p′µB)2B
3kBT

+ 2(p′µB)2⟨mi⟩
3kBT(gµB)2

∑

j

J. (4.107)

100 This follows exactly the derivation of the
Zeeman energy, except that in this case we
are working with an effective field that
includes neighboring spins.

101 β ≡ (kBT)−1.
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This is the general result. The question now arises if we can find a solution where
⟨mi⟩ ≠ 0. This is most easily seen by setting B = 0 in which case our expression simplifies
to,

⟨mi⟩ = 2(p′µB)2⟨mi⟩
3kBT(gµB)2

∑

j

J

= 2S(S + 1)⟨mi⟩
3kBT

∑

j

J (4.108)

We thus have to satisfy the following condition,

⟨mi⟩
�
1 − 2S(S + 1)

3kBT

∑

j

J

�
= 0. (4.109)

There are now two options (i) ⟨mi⟩ = 0 in which case only the paramagnetic term
survives (i.e. no ferromagnetism) and (ii),

2S(S + 1)
3kBT

∑

j

J = 1 (4.110)

In which case it will be possible to have a finite magnetization in the absence of a
magnetic field and still satisfy the self-consistency condition. The critical temperature
where this condition is satisfied is called the Curie temperature and it is defined as,

TC = 2S(S + 1)
3kB

∑

j

J, (4.111)

This self-consistency still holds in the presence of a finite magnetic field. Looking back
to Eq. 4.107 we have,

⟨mi⟩
�
1 − 2S(S + 1)

3kBT

∑

j

J

�
= (p′µB)2B

3kBT
. (4.112)

where we now recognize our expression for the Curie temperature on the lefthand-side.
We can thus simplify this to,

⟨mi⟩
�
1 − TC

T

�
= (p′µB)2B

3kBT
(4.113)

which after rearranging finally gives us the following expression for the total magneti-
zation,

M = N⟨mi⟩
V

= np′2µ2BB

3kB(T − TC)
, (4.114)

The susceptibility that follows from this is sketched in Fig. 4.34. Also shown for
comparison is the result that we obtained in Chapter 3 for the paramagnet. Since the
susceptibility diverges for both the paramagnet and the ferromagnet, it is customary
to plot χ−1 instead102. The result we obtained is valid for T ≥ TC. To obtain the result
just below TC, we need to calculate the sum in Eq. 4.98 exactly. This can be done
by realizing that the exponential is essentially a geometrical series. Writing out the
expansion we find,

∑

m

e−βEm =
∑

m

e−βgµBBeffms =
∑

m

e−cms (4.115)

= e−c(−S) + · · · + e−c(S). (4.116)

where we have defined c ≡ gµBβBeff . We can perform the sum by rewriting the last line
as, ∑

m

e−βEm = e−cS
[
1 + · · · + ec2S

]
, (4.117)

The terms in brackets form a geometrical series103 that can be summed,

∑

i

e−βEi = e−cS 1 − e
c(2S+1)

1 − ec
= e

−c(S+ 1
2 ) − ec(S+ 1

2 )

e−c/2 − ec/2
, (4.118)

where in the last expression we’ve multiplied both the numerator as well as the
denominator with e−c/2. We can now calculate the free energy as

F = − 1
β
ln

(
sinh

[
c
(
S + 1/2

)]
sinh

(
c/2
) )

(4.119)
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Figure 4.34: Comparison of the inverse mag-
netic susceptibility for a material with and
without ferromagnetic transition. In the
former case the susceptibility has a finite
temperature intercept where χ−1 = 0 (i.e.
where the susceptibility diverges.)

102 It is not possible to measure the divergence
in an experimental setting. By plotting
chi−1 one can extrapolate the measured
data set. If it extrapolates to zero at finite
temperature the material is a ferromagnet.

103

n∑

i=0
xi = 1 − xn+1

1 − x
.



Figure 4.35: Phase diagram of the Heisen-
berg ferromagnet. Indicated are the low and
high temperature regime of the temperature
dependent magnetization.

From the free energy, we can calculate a magnetization by taking the derivative,

⟨mi⟩ = −gµB
��
S + 1

2

�
coth

[
c

�
S + 1

2

�]
− 1
2
coth

�
c

2

��
(4.120)

This is the exact result so far, but again we have the magnetization appearing both
on the left- and right-hand side. We can numerically solve for the magnetization
from this. Close to (but still below) the Curie temperature we can expand coth(x) =
x−1 + x/3 − x3/45 + ... and solve for the magnetization. The resulting expression (for B = 0)
for the average magnetization can be written in the form,

⟨mi⟩ = 1
A

�
TC

T
− 1

�1/2

, (4.121)

where,

A−1 =
√

5
3

S(S + 1)√
S2 + S + 1/2

gµB

(
T

TC

)3/2

(4.122)

We now define a reduced temperature as,

t ≡ T − TC
TC

(4.123)

which gives,
T

TC
= 1 + t (4.124)

or equivalently,
TC

T
= 1
1 + t

(4.125)

With some algebra it is now easy to show that the magnetization can be written as
(with B some pre-factor),

⟨mi⟩2 = B (t + 1)2 − (t + 1)3 (4.126)

From this we find that the leading order behavior of the magnetization for t close to
zero (i.e. for T ≤ TC) is,

⟨mi⟩ ≃ B|t|1/2 (4.127)

It is equally possible to derive the susceptibility from Eq. 4.120 along similar lines.
In this case you have to take the derivative with respect to the magnetic field before
expanding the coth functions. The result is (also for T ≤ TC),

χ ≃ C|t|−1 (4.128)

The crucial result is of course that the magnetization is finite below the critical tem-
perature, indicating that we have indeed found ferromagnetism. The next section
summarizes these results.

Show that..

Eq. 4.126 follows from Eq. 4.121.
Use this to find the leading order
behavior of the magnetization.
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Figure 4.36: Comparison of the spin wave
dispersion of a ferromagnet and an anti-
ferromagnet. Note the different behavior of
the spin-waves for k → 0.

4.11 Summary of the ferromagnetic groundstate

We can now combine the results obtained in the preceding sections into a temperature
phase diagram for the ferromagnet. In the exercises you have shown that the Heisen-
berg model allows a ferromagnetic groundstate at zero temperature for J > 0. You
also showed that the Heisenberg model had excited states that can be characterized as
bosonic quasi-particles called spin-waves. At zero temperature the spin-waves condense
into the k = 0 state and the system is fully polarized. In real materials104 there will
be a zero temperature magnetization M(0). If we now turn on thermal fluctuations
(e.g. at finite temperature) spin waves will be excited and these will start to reduce
the magnetization. This gives rise at very low temperature to a Bloch law behavior
of the magnetization (i.e. M(T) ≃ −AT3/2). As temperature increases more and more
spin waves are excited and the average magnetization per unit cell will start to strongly
fluctuate. At some temperature the fluctuations are so strong that the magnetization
averages to zero. The magnetization just below this critical temperature follows a
power law behavior and right above this critical temperature the magnetization (in
the absence of an applied magnetic field) will be zero. The susceptibility at the critical
temperature diverges right at the critical temperature. This is the ‘classical’ behavior of
a phase transition: right at the transition a response function diverges, indicating that
the system is in a meta-stable state.

We summarize this in Fig. 4.35. Note that for temperatures in between the low
temperature limit and the critical temperature we have no simple expression. As a final
note to conclude our discussion of the ferromagnetic state I would like to point out
that the critical exponents105 that we obtained in mean field theory are actually not
correct. An analysis of the Heisenberg model (using the exact ‘Bethe ansatz’ approach)
shows that the actual critical exponents are,

⟨mi⟩ ≃ B|t|1/3 (4.129)

and,
χ ≃ C|t|−4/3 (4.130)

These exponents can indeed be confirmed by experiment. This concludes what we will
discuss in this course. There are several interesting facts/features of the ferromagnetic
state that you can read about in textbooks. An interesting example is the occurrence
of domain walls in real ferromagnets. The idea behind their appearance is simple (i.e.
it reduces the total energy), but their theoretical description and effect on observables
is surprisingly rich (featuring links to the mathematics of topology, solitons etc.).

4.12 Anti-ferromagnetism

So what about anti-ferromagnetism? Unfortunately, a more quantitative picture
of the anti-ferromagnetic state is a bit more complex. You have discovered some
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105 The critical exponent α of a phase transi-
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observable or a response function and t is
the reduced temperature.



of the difficulty in the last exercise. The anti-ferromagnet is however a lot more
interesting from a theoretical physics point of view. The anti-ferromagnetic state in fact
corresponds to a highly entangled, correlated state. There is an important difference
between the ferromagnet and the anti-ferromagnet. This difference becomes visible by
plotting the spectrum of excited states (see Fig. 4.36). The leading order term of the
spin-wave dispersion in the case of an anti-ferromagnet is not quadratic, but linear!.
That doesn’t sound spectacular at first, but it makes a crucial difference. For example,
the spin waves of the ferromagnet are massive while the anti-ferromagnetic variant is
massless. The anti-ferromagnetic spin waves also carry a different spin (s=0, rather than
spin 1). The origin of these differences lies in the fact that the anti-ferromagnetic state
is a spontaneously broken symmetry state. The details of this go too far to discuss
here. For now you’ll have to take it for granted that the Hubbard Hamiltonian can be
shown to be invariant under global rotational symmetry. It is not hard to visualize that
the ferromagnet still obeys global rotational symmetry (i.e. when you rotate the total
magnetization nothing really changes). For the anti-ferromagnet on the other hand
you cannot rotate all spins in the same direction simultaneously without increasing
the total energy. Because I would like to discuss the superconducting state in some
detail as well and because this also represents a spontaneously broken symmetry state
I will leave the discussion of the anti-ferromagnet for another time.
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EXERCISES IV
SPIN PROBLEMS

The content of this set of exercises has again not been discussed during class. Due to a missed
lecture hour, we are a bit behind on the planned schedule. The exercise is a bit different from
what I had in mind, but the details will be discussed in class.

SPIN OPERATORS

We recall the basic spin operator relations106. The spin operators commute:[
Sx, Sy

]
= iSz[

S2, Sa
]

= 0
(E4.1)

where a = x, y, z. Remember that you can cyclically permute the x, y and z labels. We
will be looking at lattices where spins are bound to a single site i. The commutation
relation between spin components on different sites i, j is:[

Sx,i, Sy, j
]

= i�ijSz,i. (E4.2)

In other words: operators on different lattice sites commute with each other. Recall
also that:

Sz|s,ms⟩ = ms|S,ms⟩

S2|s,ms⟩ = S(S + 1)|S,ms⟩.
(E4.3)

where S2 = S2x + S2y + S2z . We will use the shorthand notation |s,ms⟩ = |Sz⟩, with Sz|Sz⟩ =
Sz|Sz⟩. We will also need the spin-ladder operators:

S±,i ≡ Sx,i ± iSy,i, (E4.4)

which obey the commutation relations[
S+,i, S−, j

]
= 2�ijSz,i[

Sz,i, S±, j
]

= ±�ijS±, j.
(E4.5)

The spin ladder operators act on a spinstate |sz, i⟩ in the following way:

S+,i|sz⟩ = α|Sz,i + 1⟩

S−,i|sz⟩ = β|Sz,i − 1⟩.
(E4.6)

The coefficients can be determined (by you) as follows.

A First find expressions for the products S+S− and S−S+ in terms of S2 and Sz. Hint: First
use equation E4.4 and then use the definition of S2.

B Show that ⟨Sz|S−S+|Sz⟩ = |α|2 and ⟨Sz|S+S−|Sz⟩ = | β|2. Hint: Remember that the hermi-
tian conjugate

�
A|ψ⟩

�† = ⟨ψ|A† and carefully look at equation E4.4.

C Combine the results of exercise 1a and 1b with the equations from E4.3 to find the
coefficients of S− and S+:

Si,± |Sz⟩ =
√
S(S + 1) − Sz(Sz ± 1)|Sz,i ± 1⟩. (E4.7)

Note that this expression can be recast as

Si,± |Sz⟩ =
√

(S ∓ Sz)(S + 1 ± Sz)|Sz,i ± 1⟩. (E4.8)

D Finally show that the product Si · S j can be written as:

Si · S j = Sz,iSz, j +
1
2

�
S+,iS−, j + S−,iS+, j

�
. (E4.9)

THE HEISENBERG SPIN MODEL: THE QUANTUM CASE
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The ‘simplest’ model describing interactions between electron spins is the Heisenberg
model:

H = −
N∑

i=1

N∑

j=1
JijSi · S j. (E4.10)

This turns out to be quite complicated. For periodic systems, the above expression can
be rewritten as:

H = −
∑

i≠ j

JijSi · S j. (E4.11)

There is no general solution: it all depends on what we choose for Jij and the dimen-
sionality of the lattice. This should at this point remind you of the tight binding model:
there we had a number of orbitals per lattice site (atom) which ‘coupled’ together
through overlap integrals. As you have seen in previous exercises, the solution depends
on the number of orbitals per unit cell you include (here Jij) and the dimensionality
of the lattice. In this problem we will consider a linear, one-dimensional chain of spins
with nearest neighbor couplings only where Jij = �i, j+1 J107. This reduces the problem
to108:

H = − J
N∑

i=1
Si · Si+1. (E4.12)

An even simpler spin model (in fact the simplest) is the nearest neighbor Ising model:

H = − J
N∑

i=1
Sz,iSz,i+1. (E4.13)

For our choice J > 0 it is ‘obvious’ that the groundstate109 of the system will be
ferromagnetically ordered (all spins pointing in the same direction). We will ‘prove’
this statement for the Ising model first.

A Find the energy EG of the ferromagnetically ordered state. Hint: You can get the energy
by acting with the Hamiltonian E4.13 on this state.

|G⟩ = |S1,z = S, S2,z = S, . . . , SN,z = S⟩. (E4.14)

B We choose the values of S to be positive. Show that the energy of the state:

|m⟩ = Sm,−|G⟩√
2S

(E4.15)

is Em = EG + 2 JS. You can also show (but you don’t have to) that Sm,+|G⟩ = 0. Hint: first
prove the relation

Sz,iSz, j|m⟩ =
�
S − �i,m

��
S − �j,m

�
|m⟩. (E4.16)

We started out with all spins pointing up (total Sz,i = S) and have now found that the
first excited state (|m⟩ has all spins pointing up, except at site m, where Sz,m = S − 1) has
a higher energy than that state. Hence, |G⟩ is the groundstate. In general S = n/2 with
n an integer. For the special case of spin 1/2 systems, the S± operators are called spin
flip operators. We now turn to the Heisenberg chain, equation E4.12.

C First prove the relations:

S−,iS+, j|m⟩ = 2S�j,m|i⟩

S+,iS−, j|m⟩ = 2S�i,m| j⟩ + 2�i, j
�
S − �m,i

�
|m⟩.

(E4.17)

D The next step is to show that equation E4.12 is equal to:

H = − J
N∑

i=1
Si · Si+1 = − J

N∑

i=1

[
Sz,iSz,i+1 + 1

2

�
S+,iS−,i+1 + S−,iS+,i+1

�]
. (E4.18)

Hint: This is trivial given exercise 1d.

E We now calculate the groundstate energy EG of the Heisenberg model. This is done in
exactly the same way as problem 2a. Assume again that |G⟩ = |S1,z = S, S2,z = S, . . . , SN,z =
S⟩.

2

107 With J > 0.

108 This is assuming periodic boundary condi-
tions, or in other words: the chain is closed
on itself.

109 At zero temperature.
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F We can start putting things together. Just like in the Ising case we now consider the
first excited state, Eq. (19). Show that:

H|m >= EG|m > +2 JS|m > − JS(|m + 1 > +|m − 1 >) (E4.19)

Hint: First write down an expression for each individual term of the Hamiltonian
acting on |m > using Eq. 20, 21 and 22.

We have a small problem. If you compare the result of Exc. 2b and Exc. 2f you
see that in the former case we had:

H|m >= Em|m > (E4.20)

while now we have:

H|m >= Em|m > − JS(|m + 1 > +|m − 1 >) (E4.21)

The state |m > is no longer an eigenstate of the Hamiltonian! The problem is however
not hard to solve using the tools developed in the first part of the course. If you forget
for a moment that we are dealing with spins, Eq. E4.21 has the form of a nearest
neighbor tight binding model. The energy (Em) of the ’orbital’ at site m is modified by
the ’overlap’ with orbitals on sitesm ± 1where the overlap integral is replaced by JS. To
find the correct excited states of the Heisenberg chain we should take the periodicity
of the lattice into account: Bloch’s theorem.

G Use Bloch’s theorem to find the eigenenergies of the excited states of the Heisenberg
chain. Hint: Bloch’s theorem states that

|k⟩ = 1√
N

∑

m

eik·Rm |m⟩ (E4.22)

Use this to compute ⟨k|H|k⟩.

H Bonus: can you explain where the difference between the Ising chain and the Heisen-
berg chain comes from and what it means physically? Hint: it might make it easier to
understand the difference by plotting the band structure for both cases in one graph.

THE HEISENBERG SPIN MODEL: CLASSICAL CASE.

Last time we looked at the simplest spin model: the Heisenberg model. If we change
the index from i to p110, the Hamiltonian reads

H = − J
N∑

p=1
Sp · Sp+1 (E4.23)

or equivalently

H = − J
N∑

p=1

[
Sz,pSz,p+1 + 1

2

�
S+,pS−,p+1 + S−,pS+,p+1

�]
. (E4.24)

We found the groundstate energy for J > 0 and the excitation spectrum. Today we
investigate the case where J < 0.

A For J < 0, we expect the anti-ferromagnetic state to be the groundstate. This state can
be written as

|G⟩ = |↑, ↓, ↑, . . . , ↓⟩ = |S1,z = S, S2,z = −S, . . . , SN,z = −S⟩ (E4.25)

or
|G⟩ = |Sz = S, p ∈ A⟩|Sz = −S, p ∈ B⟩. (E4.26)

Show that this state is not an eigenstate of the Heisenberg Hamiltonian.

This is in fact a problem. What happens here is that the groundstate ‘spontaneously’
breaks the spin-rotational symmetry of the original Hamiltonian. It is also quite
spectacular: we have a model with one tuning knob, J, which is easy to solve on one
hand ( J > 0) and completely unsolvable on the other hand ( J < 0). In one dimension,
there actually is a solution, known as the Bethe ansatz solution, but that is beyond the
scope of this course. For higher dimensions no solution is known. There must be one:
anti-ferromagnets are frequently observed in nature. The fact that this state breaks
a continuous symmetry has an interesting consequence for the excitation spectrum.
This is the subject of this exercise.
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Approximate solutions are possible, but they are hard to obtain (and definitely not
without the use of second quantized operators). Interestingly, it is possible to calculate
the spin dispersions using a classical model for the spin system. As discussed in the
lecture, magnetism is a purely quantum phenomenon so you might wonder why this
would work. To convince you that it could work, we will first calculate the spin waves
of the ferromagnet again. This is a warming up for the anti-ferromagnetic case, which
is exactly twice as complicated, but follows the same path.

B We start with the Hamiltonian from equation E4.23 with J > 0 (the ferromagnet).
We will treat the operators as classical vectors S of length S. In this case, Sp · Sp+1 = S2.
Show that then, you can write the term with index p:

−µp · Beff ,p (E4.27)

where µp = −gµBSp. Hint: Since we are dealing with classical objects, you don’t have to
worry about commutation relations.

C In classical mechanics, Newton’s equations state that the angular momentum will
change if a torque acts on it:

∂L

∂t
= τ. (E4.28)

For a magnetic moment, the torque is equal to τ = µ × B. Use this to derive the
equations of motion for the individual spin components (Sx, Sy and Sz). Hint: The
angular momentum associated with a classical spin is ħS . Consider the motion of the
spin at site p in the effective B-field only.

D If everything went right, you should now have equations that link the rate of change
of Sp to products of the type SxpSzp+1. The resulting set is nonlinear and not easy to solve.
We make the following approximation: we assume that the amplitude of the excitation
is small, compared to the total spin. Linearize the equations of motion by setting Szp = S
and neglecting terms that are the product of Sx and Sy. You should now have:

∂Sxp

∂t
= JS

ħ

�
2Syp − Syp−1 − S

y

p+1
�

∂S
y
p

∂t
= − JS

ħ
(2Sxp − Sxp−1 − Sxp+1)

∂Szp

∂t
= 0.

(E4.29)

E As usual, we look for traveling wave solutions:

Sxp = Aei(pka−ωt)

Syp = Bei(pka−ωt).
(E4.30)

Using this ansatz, solve the equations of motion and find the spin wave dispersion.

MAGNONS OF THE ANTI-FERROMAGNET

Now that we have warmed up to the classical equations of motion, we can consider
the anti-ferromagnetic case. The calculation is identical, except for the fact that we
now have a bipartite lattice.

A Wewill need to includemore terms from theHamiltonian of exercise 3. The calculation
is easiest if we assign spin up to spins on positions 2p (the even sites) and spin down
to positions 2p + 1. This means that you will now have to write down the equations of
motion for both S2p and S2p+1. Show that doing this leads to four equations similar
to those obtained in exercise 1d. You can make the same approximation as was used
before.

B Solving this set of four equations requires an extra step. Show that the four equations
can be reduced to two equations by forming the equations of motion for S+ = Sx + iSy.

C Find the dispersion relation for the anti-ferromagnetic magnons using a similar ansatz
as in exercise 3e.

D Can you comment on the difference between the ferromagnetic and anti-ferromagnetic
dispersions? Discuss the qualitative difference between the two for small momentum
and compare the small momentum dispersions to other dispersions we have encoun-
tered during the course (for example nearly free electrons or photons).

4
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SUPERCONDUCTIVITY
A tale of a love triangle: two electrons and one phonon.



5.1 A new state of matter: a brief history

THe last chapter ends very appropriately with a Dutch discovery. Around the turn
of the 20th century (July 10th, 1908 to be precise) Heike Kamerlingh Onnes was

able to turn a small amount of Helium into liquid. This was a phenomenal result that
many had strived to achieve (James Dewar was his fiercest competitor). Helium was
in fact the last gas to be turned into liquid. To achieve this Onnes used an ingenious
series of cooling stages (Fig. 5.37) comprising expansion and compression vessels. This
technique, called liquefaction, allowed him to routinely create a cryogenic liquid and
for a while he had the coldest place (4.2 K to be precise) on earth in his laboratory.
With the machinery to refrigerate stuff in place he turned to fundamental studies of
the resistivity of metals at extreme low temperatures. Earlier experiments had led him
to the idea that as one approached absolute zero temperature, metals would turn into
perfect conductors. Lord Kelvin, James Dewar and others however predicted (correctly)
that impurities would always lead to a finite resistivity even at zero temperature. Having
access to the lowest possible temperatures, Onnes started bymeasuring the resistivity of
silver and gold. He soon realized that to study the resistivity he needed to purify these
metals: there were too many impurities (thus proving Dewar right). From his work on
liquefaction, Onnes had obtained the recipe to purify mercury. And so it was that on
April 8, 1911 Gilles Holst (Onnes’ assistant) and Kamerlingh Onnes cooled mercury to
the lowest possible temperature they could achieve. Have a look at the original data
plot in fig. 5.37. Onnes owes his Nobel prize to the fortuitous fact that (i) he could
purify mercury and (ii) that for Helium to be kept in its liquid state a bit longer, he
had found out that it helped to slightly reduce the pressure above it. The latter fact
meant that he was able to reach 4.18 K (instead of the boiling point of helium which
is 4.25 K), while the former meant that he had pure enough mercury such that the
critical temperature was maximal (Tc=4.2 K). As happens so often the stars lined up on
the evening of April 8th and superconductivity was (barely) discovered111.

Superconductivity became the ‘enigma’ of solid state physics in the 20th century.
Many famous physicists (Einstein included) tried to construct a theoretical model to
describe the superconducting state and failed. As we will discuss in this chapter, super-
conductivity is a purely quantum phenomenon. It is impossible to understand from a
classical point of view. In the end several crucial experiments led to the first working
theory. First, Kamerlingh-Onnes discovered in 1912 that a current flowing through
a superconductor did not diminish with time. In 1933, Meissner and Ochsenfeld
discovered that the magnetic field inside a superconductor was exactly zero. Another
‘smoking gun’ experiment was the discovery of the isotope effect (1950-1953)112. In an
isotope effect experiment one takes a naturally occurring elemental superconductor
(e.g. Hg, Pb, Nb etc) and determines its critical temperature. Then the element is
replaced by its isotope as much as possible (Hg200 → Hg198) and the critical temperature
is determined again. For elemental superconductors it was found that the critical
temperature depends on the mass of the element involved as,

Tc ¢
1
M1/2

. (5.1)

A little later Bardeen, Cooper and Schrieffer published their seminal work (1957). We
will discuss their achievements in more detail below, but it pays to summarize their
results up front. They ‘predicted’113 that the nearly free electron gas was unstable to
attractive interactions between the electrons. In other words, they could show that
if you include a finite attractive interaction between pairs of electrons, they would
form new ‘quasiparticle’ states (called Cooper pairs114) that would have charge 2e and
total spin moment S = 0. These new quasiparticles would therefore obey Bose-Einstein
statistics and undergo a kind of Bose-Einstein condensation into a zero momentum
state. Although they suggested that the electron-phonon interaction might be the
origin of these attractive interactions, they constructed their theory in a interaction
independent fashion. Among the experimental predictions the most famous one is
probably the opening of a gap in the density of states at the Fermi level. At the time
of writing it was not possible to directly measure the density of states, but this effect
would be clearly visible in several experimental probes, such as the specific heat or
the optical spectrum. The BCS theory was (and still is) a great success and it delivered
Bardeen his second Nobel prize in physics115.

After BCS it took a few years to verify and explore the implications of their theory
that, in the end, led to a ‘complete’ theory of electron-phonon superconductivity in
1962 due to Eliashberg. In the next section I’ll explain how you can turn the repulsive
Coulomb interaction into an attractive potential between two electrons as well as the
role played by the phonons.

Figure 5.37: Left: Original schematic sub-
mitted by Carl Linde to the US patent office
(source: https://commons.wikimedia.org).
Top right: H.K. Onnes in 1913. Picture taken
after receiving the Nobel prize in physics.
Bottom right: original sketch with data
points indicating the disappearance of re-
sistivity.

111 The next metal he chose to investigate was
Tin. He reported that it didn’t show the
hallmark ‘supraconductive’ properties of
mercury. Tc of tin is 3.7 K. Less than half
a degree difference.

112 Emanuel Maxwell from the National Bu-
reau of Standards, Washington D.C., sub-
mitted a paper to Physical review in 1950
where the isotope effect was first reported.
The paper starts as follows: ‘The existence
of a small quantity of Hg198 at the NBS
prompted us to investigate its properties as
a superconductor.’

He reported a change of Tc = 4.156
K for natural Hg to Tc = 4.177 K. This
seemingly insignificant difference holds the
key to the mechanism!

113 The theoretical framework makes experi-
mental predictions as well. Most of them
were of course ‘after the fact’.

114 The story goes that Cooper had this insight
on his train ride home after a long day of
discussion with the other two gentleman.

115 To date he remains the only person to have
ever won two Nobel prizes in physics. His
first prize was awarded in 1956 for the
discovery of the transistor, a year before
the BCS paper. In 1972 he received the
prize again for the theory of SC.
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5.2 Repulsion becomes attraction
The question that remained unanswered after BCS theory was how an attractive
interaction between electrons would come about. There is only one interaction that
couples two electrons together in a solid and this is the repulsive Coulomb interaction.
However, as we have seen in Chapter 2, the Coulomb interaction in a solid is screened
by the other charges in a solid by the dielectric function. As exercise E2.2 shows the
Fourier transform of the Coulomb potential can be written as,

Vs(k,ω) = q1q2

ε(k,ω)k2
(5.2)

where the momentum dependence of the dielectric function in its simplest form is,

ε(k) = 1 + k
2
TF

k2
. (5.3)

Here kTF is the Thomas-Fermi screening length, the distance over which electrons
can screen the disturbance caused by an accumulation of charge. However, since the
k-dependent piece of the dielectric function is positive, the Coulomb repulsion between
two electrons (q1 = q2 = −e) will always remain repulsive. So what about the frequency
dependent piece of the dielectric function? Within the Drude-Lorentz model we ended
up with the following expression,

�(ω) = 1 −
ω2
p

ω(ω + iΓ)
−
∑

ph

4π f 2ph
iωΓph − (Ω2

0,ph −ω2)

−
∑

i

4π f 2i
iωΓi − (Ω2

0,i −ω2)
.

(5.4)

Here the first term was the intraband (Drude) response, the second term a contri-
bution due to optical phonons and the last term derives from interband transitions.
For the sake of briefness, let us assume that the only important part is the phonon
contribution116. Taking just a single phonon mode into account we can drop the sum
over different optical branches and find,

�(k,ω) = 1 + k
2
TF

k2
−

4π f 2ph
iωΓph − (Ω2

0,ph −ω2)
(5.5)

which we should now insert into Eq. 5.2. This gives,

V(k,ω) = e2

k2 + k2TF − k2
4π f 2

ph

iωΓph−(Ω2
0,ph−ω2)

(5.6)

which needs some rewriting to see if this is attractive. For simplicity we assume an
infinite lifetime of the phonon mode (Γ = 0) and divide out a term (k2 + k2TF):

V(k,ω) = e2

(k2 + k2TF)
(
1 − k2 4π f 2

ph

(k2+k2
TF

)(ω2−Ω2
0,ph)

) (5.7)

Next we multiply by ‘1’,

V(k,ω) =
e2(ω2 − Ω2

0,ph)

(k2 + k2TF)
(

(ω2 − Ω2
0,ph − k2

4π f 2
ph

(k2+k2
TF

)

) (5.8)

Now note that in the denominator the second term in brackets defines a momentum
dependent divergence. In other words, at a frequency,

ω2
k =

[
Ω2

0,ph + k2
4π f 2ph
k2 + k2TF

]
(5.9)

the interaction diverges. Note that this frequency is (almost) completely determined
by the properties of the phonon mode (the resonance frequency and the oscillator
strength fph). Inserting this back into the expression for the potential energy we have,

V(k,ω) =
e2(ω2 − Ω2

0,ph)
(k2 + k2TF)(ω2 −ω2

k
)

(5.10)
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Now note that the numerator will be negative if ω < Ωo,ph, while the denominator
will be negative for ω < ωk. Looking back to equation 5.9, we see that ωk > Ωo,ph
for a small range of frequencies. In other words, the potential will be negative for
Ωo,ph < ω < ωk. Figure 5.38 shows the potential as a function of momentum and
frequency for a suitably chosen set of parameters. Note that I have restricted the color
range to highlight what happens at low energy and momentum. The most important
point is of course the fact that you can see a reasonable ‘blue’ area, which is where the
potential is attractive.

This is the crucial ingredient behind superconductivity: the interaction between
electrons and phonons gives rise to a dynamic interaction that can become attractive.
The reason for calling the interaction ‘dynamic’ arises from the frequency dependent
piece of the interaction. In our current model we have assumed a simplified nearly free
electron gas where the Coulomb potential depends on the magnitude of momentum,
but not on the direction. This is really a result of the fact that we started by assuming
a spherically symmetric dispersion. In real materials the momentum dependence can
be much more complicated as a result of bandstructure and crystal symmetry. This in
principle can give rise to different types of superconductivity. We will return to this
point later.

5.3 The Cooper problem
In the previous section we have seen how the electron-phonon interaction can result
in an attractive potential between two electrons. But what is the wavefunction for two
electrons under the influence of an attractive interaction? Cooper realized that such
an attractive interaction would result in a bound state of the two particles (very much
like an H2 molecule)117. In this section we will follow his derivation of both the wave
function and its properties. It is possible to use the form of the potential derived in
the previous section, but we will very quickly have to resort to numerical evaluation
of integrals. Instead we will follow Cooper on his train ride home and assume that the
potential is spherically symmetric and has the form,

V(r) =

˚
−V ω < ωD

0 ω ≥ ωD
(5.11)

This is just a constant spherical potential well which is attractive over some range of
energies. What this actually means in the Cooper problem will be discussed in more
detail at the end118. In what follows we will consider the quantummechanical problem
of two electrons interacting with an attractive potential and solve it by (i) guessing a
trial wavefunction, (ii) transform coordinates to center of mass coordinates, (iii) use a
variational approach to determine the binding energy for the formation of a bound
state. As usual, we first define the Schrödinger equation,[

− ħ2

2m
∇2

1 −
ħ2

2m
∇2

2 + V(r1 − r2)
]

Ψ k(r1, r2) = E Ψ k(r1, r2) (5.12)

Let’s start with a first guess of the wave function for two particles with momenta k1
and k2. What would be your guess for the wavefunction? I hope that based on reading
the previous chapters, your answer is,

Ψ(r1, r2) = Aeik1 ·r1 + Beik2 ·r2 (5.13)

Unfortunately, this is also wrong. The key insight contributed by Cooper, was that this
is not the correct wavefunction. The linear combination principle breaks down for this
particular problem. Note that this is a crucial departure from the basic mathematical
structure of early quantum mechanics. The idea had always been that for a given
physical system it must be possible to write down a complete set of basis states and
that the wavefunction had to be a linear combination of these states. In terms of linear
algebra, any vector (groundstate) in the (Hilbert) space defined by a set of basis vectors
can be expressed as a vector sum (linear combination) of these basis vectors. If you
imagine a universe with two non-interacting electrons, your Hilbert space is spanned
by two plane wave states. Adiabatically turning on a small interaction, you would
expect that the new groundstate is a linear combination of these two plane wave states.
Cooper made a radical departure from this and postulated a new guess119:

Ψ(r1, r2) = Aei(k1 ·r1+k2 ·r2) (5.14)

Note that the energy associated with this state (without interactions) is still,

E0 = ħ2

2m
�
k21 + k22

�
(5.15)
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Figure 5.38: Color plot of the potential in
Eq. 5.10 for suitably chosen parameters. The
color scale is chosen such that white corre-
sponds to (close to) zero, while blue is at-
tractive and red is repulsive.

117 If you wonder why the two electrons do
not simply ‘collapse’ under an attractive in-
teraction: apart from the potential energy
there is also kinetic energy. TheHeisenberg
principle will tell you that as you confine
the two electrons in a smaller and smaller
energy, their kinetic energy (∝ ∆k) will
increase. The ‘size’ of the bound state can
in fact be estimated from the balance of
kinetic and potential energy.

118 The notation is a bit strange: the potential
does not depend on r, but on ω and so it
is attractive independent of r if the energy
of the pair is smaller than ωD.

119 The A appearing here is just a normaliza-
tion factor.
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as you would find for two independent electrons. The reason Cooper chose this partic-
ular form is that it allowed him to rewrite the problem in centre of mass coordinates.
In this case we will have,

K = k1 + k2, k = k1 − k2
2

(5.16)

R = r1+r2
2 , r = r1 − r2 (5.17)

where K, R refers to the centre of mass, while k, r refers to the motion relative to the
centre of mass. With these definitions we can rewrite the wavefunction as,

Ψ(R, r) = Aei(K·R+k·r) (5.18)

And the energy in the absence of interactions will be,

E0 = ħ2

m

�
K2

4
+ k2

�
(5.19)

or in the case K = 0120,

E0 = ħ2k2

m
(5.20)

The lowest energy for a Cooper pair is thus obtained if K = 0, which means k1 = −k2
with a corresponding wave function,

Ψ(r1, r2) = Aei(k·r1−k·r2) = Aeikr = Ψ k(r) (5.21)

We now have a single plane wave, trial solution that is fundamentally different from
the ones we have used so far. The Schrödinger equation for such a pair reads[

− ħ2

2m
∇2

1 −
ħ2

2m
∇2

2 + V(r1 − r2)
]

Ψ k(r) = Ek Ψ k(r) (5.22)

which can now be rewritten as,

[(E0 − Ek) + V(r)] Ψ k(r) = 0 (5.23)

Assuming now that the wave function has the form of a superposition of our newfound
trial states,

Ψ k(r) = A
∑

k

ake
ikr (5.24)

the Schrödinger equation transforms to,

A
∑

k

(E0 − Ek)akeikr + A
∑

k

V(r)akeikr = 0 (5.25)

Just like we did for the tight binding problem, we nowmultiply by e−ik′ r and integrate121,
∑

k

∫
d3r(E0 − Ek)akei(k−k

′ )r +
∑

k

∫
d3rV(r)akei(k−k

′ )r = 0 (5.26)

∑

k

(E0 − Ek)ak�k,k′ +
∑

k

∫
d3rV(r)akei(k−k

′ )r = 0 (5.27)

(E0 − Ek′ )ak′ +
∑

k

∫
d3rV(r)akei(k−k

′ )r = 0. (5.28)

And this brings us to a new ‘central equation’, but this time for two electrons bound
in a cooper pair. The solutions of course depend on our choice for the potential. As
mentioned above, the simplest choice is to assume a constant spherically symmetric
potential. The neat result obtained by BCS is that, no matter what the potential looks
like, as soon as there is a non-zero attractive potential, Cooper pairs will form. Note
that the second term in 5.28 contains just the Fourier coefficients of the potential,

(E0 − Ek′ )ak′ +
∑

k

ak

∫
d3rV(r)ei(k−k′ )r = 0 (5.29)

(E0 − Ek′ )ak′ +
∑

k

akVk,k′ = 0 (5.30)

Hopefully, the pattern looks familiar. We started by assuming a trial wave function
consisting of a linear combination of basis states. From the Schrödinger equation we
then obtain a relation between all coefficients of the trial wavefunction. The next step
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120 For a single particle we would find E0 =
ħ2k2

2m .

121 Note that on the second line we can trans-
form one integral to a �-function, but not
for the second term since there is an addi-
tional r dependence in the potential. We
have also dropped the A.



will be to eliminate the dependence on the coefficients (e.g. by solving a set of coupled
equations using linear algebra) and find the energy spectrum of the solutions. To solve
the last set of expressions we take a slightly different approach and follow the original
derivation of Cooper.

The sum over momenta cannot be evaluated without making an explicit choice
for the Fourier coefficients of the potential. Cooper noted that there would likely
be restrictions on the allowed momenta in the sum. After all, the Pauli principle
combined with energy and momentum conservation will prevent most scattering
processes. In the case of phonon assisted scattering (as discussed above), the allowed
energy range is determined by the average phonon energy. This is exemplified in Eq.
5.11 that depends on a frequency ωD, the Debye frequency, which is a measure of this
average phonon energy122. It is important to note that this average energy is typically
a small number compared to the energies of the electrons involved. For example, for
Pb the Debye frequency is about 5 meV, while the Fermi energy is on the order of 5 eV.
They differ by a factor 1000! The interaction potential enables two electrons with
momenta k1, k2 to scatter to a new state with k′1, k′2 by ‘borrowing’ some energy from a
phonon. Since this energy is small compared to the Fermi energy, only a small fraction
of all electrons is sensitive to this interaction. This is depicted in Fig. 5.39 where the
narrow range of momenta states around the Fermi level is indicated within which
scattering can take place conserving both energy and momentum. From Fig. 5.39 we
see that the two particle momentum has to fulfill the condition,

2εF <
ħ2k2

2m
< 2εF + 2ħωD (5.31)

We therefore take,

Vk,k′ =

˚
−V0 εF < εk < εF + ħωD

0 otherwise.
(5.32)

Starting from Eq. 5.30, we thus have,

(E0 − Ek′ )ak′ =
∑

k

akV0 = C (5.33)

where C is a constant. This implies that,

ak′ = C

E0 − Ek′
(5.34)

This observation allows us to eliminate the coefficients. Summing Eq. 5.34 over
momenta we obtain, ∑

k

ak = C
∑

k

1
E0 − Ek

(5.35)

Since from 5.33 we have,
V0

∑

k

ak = C →
∑

k

ak = C

V0
(5.36)

we can eliminate the sum over ak to find a relation between the eigenvalues and the
interaction,

1
V0

=
∑

k

1
E0 − Ek

. (5.37)

Keeping the restrictions arising from our choice of the potential in mind, we can
transform the sum over momenta into an integral over energies123,

1
V0

=
∫ ε f +ħωD

εF

f (E0)dE0
E0 − E

. (5.38)

where f (E0) is the density of states for pairs with energy E0. Since we allow only pairs
to form within a narrow energy shell around the Fermi level, the density of pairs is
approximately equal to the density of states for electrons at the Fermi level,

1
V0

= ρ(εF)
∫ ε f +ħωD

εF

dE0

E0 − E
. (5.39)

The integral is now easy and gives,

1
V0

= ρ(εF) ln
�
εF + ħωD − E
εF − E

�
(5.40)

= ρ(εF) ln
�
1 + ħωD

εF − E

�
(5.41)

122 In the full electron-phonon interaction the-
ory the precise frequency dependence of
the phonon branches is taken into account.

Figure 5.39: Fermi surface (dark red) with
a narrow shell of energies with εF < εk <
εF + ħωD indicated in light red.

123 We make use here of Eq. 5.20.
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from which we can estimate the gain in energy for electrons to form a bound state as
follows. To form a bound state the energy needs to be lower than the energy of the
free electrons. In other words, E = εF − ∆ where ∆ is the energy gain per particle. From
this is it follows that εF − E = ∆ and so,

1
ρ(εF)V0

= ln
�
1 + ħωD

∆

�
. (5.42)

Solving for the binding energy we find,

∆ = ħωD

e1/ρ(εF)V0 − 1
(5.43)

For small interactions, ρ(εF)V0 ≪ 1, this further simplifies to,

∆ = ħωDe
−1/V0ρ(εF). (5.44)

This is an interesting result: it shows that no matter how small the interaction V0 is, if
it is non-zero electrons will always gain some energy by forming a bound state. It also
shows that you cannot turn an insulator into a superconductor. The early recognition
that BCS got for their theory derives from another feature of this expression. Very
roughly one expects the critical temperature to be proportional to the bound state
energy124 i.e.,

∆ ∝ kBTC (5.45)
Comparing this with Eq. 5.44 we find,

kBTC ≈ ωD ≈
√
k

M
, (5.46)

which provided a very simple explanation for the isotope effect. The Cooper solution
also gives a simple explanation for the ‘zero resistance’ state. As in a normal metal,
the conductivity (or resistivity) is determined by states close to the Fermi level, which
deep in the superconducting state will consist of Cooper pairs. Looking back to our
wave function and Schrödinger equation we see that the wave function for a pair can
be written as125,

Ψ(k + K/2, −k + K/2) = eiKR Ψ(k, −k) (5.47)
This means that the velocity of a pair is simply,

v = ħK

2m
. (5.48)

and hence current will be proportional to,

js = −nseħ
2m

K. (5.49)

where ns is the supercurrent density. So, let’s imagine that we set a current in motion.
In a normal metal we will reach an equilibrium between the acceleration provided
by the electric field and the (random) scattering of electrons on impurities. In these
collisions an electron changes its momentum from a state k to a state k′ = k + q with an
associated loss in energy. Remember that these scattering processes take place close to
the Fermi level. In the superconducting state there is now an additional restriction:
for the momentum to change we first need to remove the electron from the Cooper
pair state and there is an energy cost of 2∆ associated with that. In other words, when

ħ2(k + K/2)2

m
− ħ2k2

m
< 2∆ (5.50)

there is not enough energy to break up the Cooper pair. Since the typical momentumof
each electron in the pair is of the order of the Fermi momentum, kF, we have (K << kF),

ħ2kFK

m
< 2∆ (5.51)

Combining this with our expression for the current, we find that as long as we satisfy
the condition,

js < −
nse∆
ħkF

(5.52)

there is no mechanism by which the electrons can lose energy. This is the origin of the
zero-resistance state: it costs almost no energy to set Cooper pairs in motion (just as in
the free electron model, ε ∝ K2) and as soon as you set a Cooper pair flow in motion
there is no way to dissipate the energy.
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124 This is ‘easy’ to see: if the energy asso-
ciated with thermal fluctuations, kBT, is
larger than the energy of the bound state,
∆, Cooper pairs will be destroyed.

125 Since the potential does not depend on K or
R, the wavefunction is separable and the K
dependent piece has to be an eigenfunction
of the total momentum. Hence it can be
written as a ‘plane wave’.



5.4 The Bardeen-Cooper-Schrieffer groundstate energy
In the previous section we cheated a little: we started out by calculating the gain in
energy of a Cooper pair (involving only 2 electrons) and then made some statements
that concerned all electrons at the same time. In this section we will fix this and
take Cooper’s idea about bound electron states and try to do the same exercise for all
electrons at once. This turns out to be a bit more complicated, but the physical idea is
exactly the same126.

We start again with the Cooper wavefunction (written in bra-ket notation now),

Ψ k(r) = |k⟩|−k⟩. (5.53)

Since this is the proper solution to the two particle problem for a given k, we might
expect that the wavefunction for all pairs is a linear superposition of pair wavefunctions,
i.e.:

Ψ =
∑

k

ck|k⟩|−k⟩. (5.54)

Alas, just like linear superpositions didn’t work for two particles, it doesn’t work for
many particles either. BCS had another ingenious ingredient to their theory. The
Cooper pair is essentially a ‘particle in a box’ model and as such does not directly
apply to a solid. After all, all the electrons are indistinguishable and it is not obvious
why two particular electrons are likely to form a pair. Even when many electrons
do form pairs, it will cost no energy for electrons to exchange between different pairs.
This doesn’t feel very comfortable. It also doesn’t fit well with the identification of
‘particles’ with excitations of a solid. Just like band-electrons are the excitations of
the metallic state and spin-waves are the excitations of the ferromagnet, Cooper pairs
are excitations of the superconductor. In both other cases we had a description of the
‘vacuum’ state (a.k.a. the groundstate). For the metal it is a linear superposition of the
single particle wave functions (atomic orbitals) while in the ferromagnet it is a linear
superposition of spin states. We also remarked (without further specification) that the
anti-ferromagnetic groundstate was special. The superconducting groundstate also
turns out to be special. In the case of a superconductor a symmetry of the Hamiltonian
is also broken127 and as a result a linear superposition of basis states is no longer
appropriate. So what should we choose? Unfortunately, it is not so easy to justify the
choice we are about to make without resorting to ‘second quantization’. It boils down
to the observation that in interactions between Cooper pairs, 2 pairs are involved:
scattering two particles from a state (k, −k) to a state (k′ , −k′)′ implies that an ‘empty’
Cooper state (k′ , −k′) becomes occupied and a new empty Cooper state (k, −k) is created.
This led BCS to suggest that the correct wavefunction should take as basis states,

φ2(k) ≡ uk |Ok⟩ + vk |k, −k⟩ (5.55)

The function φ2 exemplifies precisely this mixing of empty and full Cooper states.
|Ok⟩ represents an empty Cooper pair, while |k, −k⟩ represents an occupied state. The
coefficients uk and uk measure the relative mixture of empty and occupied for a given
state. Note that they depend on the internal momentum of the pair, anticipating on
the outcome of the calculation to follow128. For reasons beyond the scope of these
notes the trial wavefunction becomes,

|G⟩ ≡
∏

k

φ2(k) =
∏

k

(
uk |Ok⟩ + vk |k, −k⟩

)
(5.56)

and not a linear superpositions of the φ2. |G⟩ has an uncomfortable property: the total
number of particles is not conserved. To see this, we start writing out the product,

|G⟩ = (uk1uk2 ...ukN |Ok1⟩ |Ok2⟩ ... |OkN ⟩) + (vk1 |k1, −k1⟩ uk2 ...ukN |Ok2⟩ ... |OkN ⟩) + ... (5.57)

and note that the first term contains no electrons, the second 2 electrons, the third
term will contain 4 electrons and so on. This is a real problem, but we will fix it in
a moment. To continue, we now need to define the problem we are trying to solve.
Similar to what we did for the Hubbard model, we start from a known Hamiltonian
(written in ‘first quantized’ form),

Hq =
∑

q

ε(q) |q⟩ ⟨q| =
∑

q

ε(q)nq (5.58)

where we identified nq ≡ |q⟩ ⟨q| as the Fourier components of the single particle
density operator and the ε(q) describes a band crossing the Fermi level. We add to
this Hamiltonian a potential energy term He−e. We do not necessarily need to provide
an explicit form this interaction. Instead, we make use of the ideas we developed in

126 This section and the next follow largely
the derivation presented in the book by
Economou (see reading list).

127 The symmetry that is broken is known as
a U(1) gauge symmetry. It is because of
this symmetry that you are free to choose
the electromagnetic gauge potential.

128 At this point it is not obvious why momen-
tum should be involved. u and v are just
complex numbers. As we will see, the pre-
cise value does depend on momentum.
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solving the Cooper problem by stating that the potential has Fourier components
Vk,k′ . This can perhaps be made more insightful by showing you the Feynman diagram
describing the scattering process (Fig. 5.40). This figure shows that two electrons
(one Cooper pair) with momenta (k, −k) are scattered by the interaction to new states
with momenta (k′ , −k′). In this process momentum needs to be conserved, and so the
interaction will necessarily depend on both k and k′ . This brings us to the point where
we can start to calculate the groundstate energy from,

⟨G| H |G⟩ = ⟨G| Hq |G⟩ + ⟨G| He−e |G⟩ (5.59)

Let’s look at the first term on the r.h.s. of this. The energy is just a number so,

⟨G| Hq |G⟩ =
∑

q

ε(q) ⟨G| nq |G⟩ (5.60)

and this just counts the number of particles withmomentum q in the state |G⟩. Making
use of the definition of |G⟩ (Eq. 5.56) we have129,

⟨G| nq |G⟩ =
∏

k,k′
⟨φ2(k)| nq |φ2(k′)⟩ (5.61)

We can evaluate the action of the density operator on the state |φ2(k′)⟩ as,

nq |φ2(k′)⟩ = nquk′ |Ok′ ⟩ + nqvk′ |k′ , −k′⟩ (5.62)

If you have never seen these kind of operations before, i’ll first give you an explanation
of how to evaluate this in words. The operator n ‘measures’ the number of particles. In
our case we have amomentumnumber operator that counts particles withmomentum
q. If this operator acts on a random quantum state with momentum k it will always be
zero. Unless...k = q. A simple mathematical way to formulate exactly this is,

nq |k⟩ = �q,k |k⟩ (5.63)

The delta function is zero except when q = k and we see that |k⟩ is an eigenvector of
the operator nk with eigenvalue 1. Now to evaluate Eq. 5.62, we observe that the
number of particles with momentum q in the unoccupied Cooper state |Ok′ ⟩ is (quite
obviously) exactly zero. It is an empty state after all. There are however two particles
in the occupied state and so,

nq |φ2(k′)⟩ = vk′ �q,k′ |k′ , −k′⟩ + vk′ �q,−k′ |k′ , −k′⟩ (5.64)

We can now evaluate the expectation value of the momentum density operator as,

⟨φ2(k)| nq |φ2(k′)⟩ = (u*k ⟨Ok| + v*k ⟨k, −k|)(vk′ �q,k′ |k′ , −k′⟩ + vk′ �q,−k′ |k′ , −k′⟩) (5.65)

Writing out this product we get 4 terms, but the two terms in which |Ok⟩ appears
evaluate to zero130. This leaves,

⟨φ2(k)| nq |φ2(k′)⟩ = v*kvk′ �q,k′ ⟨k, −k|k′ , −k′⟩ + v*kvk′ �q,−k′ ⟨k, −k|k′ , −k′⟩ (5.66)

now we note that the bra-kets appearing here are orthogonal if they do not have the
same momentum. Therefore we can replace these with a �-function (i.e. ⟨k, −k|k′ , −k′⟩ =
�k,k′ )

⟨φ2(k)| nq |φ2(k′)⟩ = v*kvk′ �q,k′ �k,k′ + v*kvk′ �q,−k′ �k,k′ (5.67)

This now allows us to evaluate Eq. 5.60

⟨G| Hk |G⟩ =
∏

k,k′

∑

q

ε(q) ⟨φ2(k)| nq |φ2(k′)⟩ (5.68)

It is not quite obvious how to deal with both the sum and the product simultaneously.
However when you expand the product, there is only one term corresponding to the
diagram in Fig. 5.40 for every k and k′ and these appear in all combinations. In other
words for every k and k′ there will be a term of the form,

ε(q) ⟨φ2(k1)|φ2(k′1)⟩ ⟨φ2(k2)|φ2(k′2)⟩ ... ⟨φ2(k)| nq1 |φ2(k
′)⟩ ... ⟨φ2(kN)|φ2(k′N)⟩ (5.69)

Because the states |φ2(k′)⟩ are supposed to be normalized, all these terms evaluate to 1
except the one containing the expectation value of nq. Inserting Eq. 5.67 in this term
and summing over all possible q gives a single term,

ε(k′)v*kvk′ �k,k′ + ε(−k′)v*kvk′ �k,k′ (5.70)
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Figure 5.40: Feynman diagram for the scat-
tering of a Cooper pair to a new state. The
interaction is indicated as the wiggly line.

129 Notice that we get two products, one over
k and one over k′ .

130 This is because the overlap ⟨Ok|k′ , −k′⟩ is
zero.



and since we will obtain such a term for all possible k, k′ we need to sum over these
variables. Therefore,

⟨G| Hk |G⟩ =
∑

k,k′
ε(k′)v*kvk′ �k,k′ + ε(−k′)v*kvk′ �k,k′ = 2

∑

k

ε(k)v*kvk (5.71)

where in the second step we have used the fact that ε(−k) = ε(k).
The next step in our calculation of the groundstate energy requires us to evaluate

the potential term,
⟨G| He−e |G⟩ =

∏

k,k′
⟨φ2(k)|He−e |φ2(k′)⟩ (5.72)

This is really a bit more tricky. To understand how to evaluate this we refer back to Fig.
5.40. As indicated, time progresses in the vertical direction in this Feynman diagram.
That means that in the bottom part of the figure the state,

|φ2(k)⟩ = (uk |Ok⟩ + vk |k, −k⟩) (5.73)

has a large vk and small uk, while simultaneously the state |φ2(k′)⟩ has a large uk′ and
small vk′ . At the end of the interaction the roles are reversed. This implies that (i) the
interaction only links states k and k′ and (ii) only 1 term gives a finite contribution.
In other words, we can replace the product by a sum (similar to what was done in Eq.
5.71)

⟨G| He−e |G⟩ =
∑

k,k′
⟨φ2(k′)| ⟨φ2(k)| He−e |φ2(k)⟩ |φ2(k′)⟩ (5.74)

and we need to evaluate the product appearing here. It is not hard to see that out of
the 16 terms arising from this product only 1 corresponds to the diagram in Fig. 5.40.
Therefore we are left with,

⟨G| He−e |G⟩ =
∑

k,k′
u*kv

*
k′ ⟨k′ , −k′| He−e |k, −k⟩ uk′vk (5.75)

The term in brackets is just a number quantifying the interaction strength for electron
states scattering from a state with momentum k to a state with momentum k′ ,

⟨G| He−e |G⟩ = 1
V

∑

k,k′
u*kv

*
k′uk′vkVk,k′ (5.76)

The energy for the BCS groundstate is thus given by,

⟨G| H |G⟩ = 2
∑

k

ε(k)v*kvk + 1
V

∑

k,k′
u*kv

*
k′uk′vkVk,k′ (5.77)

The next step we need to take is to find expressions for uk and vk, such that the total
energy is lower than the energy of the original metallic state131. It turns out that this
is not so simple: the BCS groundstate |G⟩ is not an eigenstate of the Hamiltonian; as
pointed out before the number of particles is not conserved. The problem can be fixed
by working with the grand canonical ensemble, which is the topic of the next section.

5.5 Optimizing the BCS grand thermodynamic potential
In the grand canonical ensemble we minimize the grand thermodynamic potential,

Ω = U − TS − µNe (5.78)

rather than the energy U itself. Since we are going to be interested in the groundstate
for the moment, we can work at zero temperature ignoring the term −TS. The chemical
potential in a solid is fixed and chosen to be equal to the Fermi level in the normal, non-
superconducting state: µ ≡ EF. This is not unreasonable since at elevated temperatures,
above the critical temperature, the system needs to return to a normal metal where
the chemical potential and Fermi level are the same. The total energy U is given by Eq.
5.77, while the total number of particles is given by132,

Ne =
∑

q

⟨G| nq |G⟩ = 2
∑

k

v*kvk (5.79)

Note that this expression actually makes sense: |vk|2 is the probability of occupying
the state |k, −k >. Each of these states has 2 particles in it and therefore summing over
all the occupied states should give the total number of particles. By including this
as a condition in the optimization of the energy functional we ensure that the total

131 Note that if we setVk,k′ to zero, we end up
with vk = 1 and we have a tight-binding
metal.

132 Following the same arguments as the one
leading to Eq. 5.71.
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number of particles remains fixed at Ne. Putting it all together we find that we need
to optimize the following potential:

Ω = 2
∑

k

ε(k)v*kvk + 1
V

∑

k,k′
u*kv

*
k′uk′vkVk,k′ − 2EF

∑

k

v*kvk (5.80)

which can be simplified to,

Ω = 2
∑

k

�ε(k)v*kvk + 1
V

∑

k,k′
u*kv

*
k′uk′vkVk,k′ (5.81)

by defining �ε(k) ≡ ε(k) − EF. Next we note that the grand thermodynamic potential,
corresponding to an energy, is a real number. It is however expressed in terms of
complex numbers uk and vk and their complex conjugates. It is therefore sufficient to
minimize Ω with respect to one of these components133. In other words, taking:

∂Ω
∂v*
k

= 0 (5.82)

will minimize the grand thermodynamic potential. We can make use of the normal-
ization of the wave function to find a relation between the derivative of u*k and v*k . By
taking the derivative of

uku
*
k + vkv*k = 1 (5.83)

with respect to v*k we find,
∂u*k
∂v*
k

= − vk
uk

(5.84)

This should be used as a chain rule when minimizing the grand thermodynamic
potential Eq. 5.81 using Eq. 5.82. From this we find that the grand thermodynamic
potential is minimized when,

2�ε(k)vk + 1
V

∑

k′
u*kuk′vk′Vk′ ,k −

1
V

v2k

uk

∑

k′
uk′v

*
k′Vk,k′ = 0 (5.85)

At this point we are going to make the assumption that we are dealing with a homo-
geneous system, so that we can take uk and vk as real numbers134. Rearranging then
gives,

2�ε(k)vkuk =
v2k

V

∑

k′
uk′vk′Vk,k′ −

u2k

V

∑

k′
uk′vk′Vk′ ,k, (5.86)

which can be rewritten as,
2�ε(k)vkuk = (v2k − u2k)∆k (5.87)

by defining the gap function,

∆k ≡
1
V

∑

k′
uk′vk′Vk,k′ (5.88)

Equation 5.87 can be turned into a self-consistent solution by making use of the
normalization of the wavefunction, u2k + v2k = 1. In order to do this we square Eq. 5.87
and write,

(2�ε(k))2v2ku2k = (v2k − u2k)2∆2
k

= (v4k + u4k − 2v2ku2k)∆2
k

= ((v2k + u2k)2 − 4v2ku2k)∆2
k

= (1 − 4v2ku2k)∆2
k (5.89)

Where we made use of the normalization condition in the last step. Rearranging gives,

4
[
�ε(k)2 + ∆2

k

]
v2ku

2
k − ∆2

k = 0 (5.90)

This is a fourth order equation for the uk and vk that can be solved (using the normal-
ization condition once more) to give,

u2k = 1
2

1 ± �ε(k)√
�ε(k)2 + ∆2

k

 (5.91)

and

v2k = 1
2

1 ∓ �ε(k)√
�ε(k)2 + ∆2

k

 (5.92)
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133 See for example, D.G. Messerschmitt @
http://www.eecs.berkeley.edu/Pubs
/TechRpts/2006/EECS-2006-93.pdf

134 If the uk and vk are complex, this results
in an overall complex phase of the wave-
function. In a uniform material this phase
is meaningless and we can ignore it. In
Ginzburg-Landau theory non-uniformity
is taken into account and the phase does
matter.

Show that..

...Eq.’s 5.91 and 5.92 satisfy the
self-consistency and normalization
condition.



and that is the final result. We have obtained expressions for the coefficients appearing
in the BCS wavefunction that minimize the grand thermodynamic potential. It
remains to show that this potential has a lower energy than the normal state grand
thermodynamic potential. That is, we need to determine:

ΩN − ΩSC = 2
∑

k<kF

�εk − 2
∑

k<kF

�εkv2k − 2
∑

k>kF

�εkv2k − ⟨G| He−e |G⟩ (5.93)

This is not completely trivial. It can be shown that this is equivalent to,

ΩN − ΩSC =
∑

k

[
∆2
k

2Ek
+ |�εk|2

Ek
− |�εk|

]
(5.94)

which after changing from sum to integral over energy and making the standard
approximation of the density of states at the fermi level gives,

ΩN − ΩSC = 1
2
ρ(εF)∆2 (5.95)

A more elegant result is obtained when we combine Eq. 5.88 with the expressions for
the wave function coefficients. This gives,

∆k = − 1
V

∑

k′

Vk,k′∆k′

2
√

�ε(k′)2 + ∆2
k′

(5.96)

which is known as the BCS gap equation. This equation is really equivalent to a
self-consistency condition. For a given set of Fourier coefficients Vk,k′ , we solve for the
gap ∆k. If Eq. 5.96 has a non-trivial (e.g. non-zero) solution, the normal state is unstable
and a superconductor will form. Although this is the real result we set out to obtain,
we have achieved much more along the way. If you got lost in the purely mathematical
treatment so far: the next section aims to explain you the physics underlying it all.

5.6 Bogoliubov quasiparticles and the energy spectrum of a supercon-
ductor

The physics behind superconductivity is really quite strange. The origin behind the
strangeness is quantum mechanics: a superconductor is a material in which the elec-
tronic properties are described by a single, macroscopic coherent quantum state. What
does that mean? It means that the concept of electrons should really be forgotten
when you think about the low energy properties of the superconducting state. Instead,
the system is described by a coherent state that can be called a ‘vacuum state’. There
are no particles in this state (hence the name). If we somehow implant a minimal bit
of energy in this vacuum state (and the minimal quantum turns out to be 2∆) we will
create a particle pair called a Cooper pair. This is not a coupled pair of electrons. It
is a particle with a certain mass and charge equal to two electron charges. It has spin
zero (at least in the elementary superconductors that fall within the BCS universality
class). This particle is sometimes also called Bogoliubon after the mathematician that
invented a neat trick to diagonalize the BCS hamiltonian in second quantization in
three lines.

Before explaining the energy spectrum in a bit more detail, I would like to reiter-
ate this point. A superconductor is not simply a collection of bound states of electron
pairs! The wave function describing electrons involved in the superconducting dance
is really a completely different object from the ‘simple’ plane wave or tight binding
states from which we derive our intuition. In the superconducting wavefunction the
coordinates and momenta of all the electrons are coupled together into one single
wavefunction!

To elucidate the results obtained in the previous section I will now first discuss the
energy spectrum in the normal state in terms of our new wave function. To discuss
normal state properties turns out to be relatively straightforward. We will refer to
Fig. 5.41 in what follows. Interestingly, the normal state tight-binding metal can be
equally well described by the BCS wave function. To see this we set ∆k to zero in Eq.
5.91 and 5.92. We also note that the real solution has to describe the band dispersion
in the normal state and so the only appropriate choice for the signs is determined by
the condition that vk = 1 and uk = 0 for ε(k) < EF. We therefore obtain,

v2k = 1
2

(
1 − ε(k) − E f

|ε(k) − EF|

)
(5.97)

u2k = 1
2

(
1 +

ε(k) − E f
|ε(k) − EF|

)
(5.98)
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Figure 5.41: The energy spectrum for the
normal (left) and superconducting (right)
states. The SC state is characterized by a gap
at the Fermi level, which is considered to be
the order parameter of the SC state. Also
indicated in both cases are the approximate
values for the vk and uk.

In the context of the BCS wave function this describes exactly the energy spectrum
of the normal metal. For momenta k < kF we have vk = 1 and the state |k, −k⟩ is
completely occupied. At the same time, for k > kF we have that uk = 1 and the state |Ok⟩
is completely occupied. This is equivalent to saying that (at T=0 if ∆ = 0) all electron
states below the Fermi level are occupied and all states above the Fermi level are empty.

Now comes the magic of the superconducting state. We assume for the moment
that there is a momentum independent, finite attractive interaction (i.e. Vk,k′ = −V0
for a range of energies, see Eq. 5.11). This allows us to rewrite Eq. 5.96 as,

V

V0

∑

k′
= 1
2
√
�ε(k′)2 + ∆2

(5.99)

This can be solved following a similar approach as was used for the Cooper problem (Eq.
5.38). The end result is in fact equivalent to the result obtained there (Eq. 5.44). We
have found that in the presence of a finite attractive interaction a finite gap develops.
In fact, the new energy spectrum will be given by:

Ek ≡
√

�ε(k)2 + ∆2
k

=
√

(ε(k) − µ)2 + ∆2
k

(5.100)

which shows that ∆ really corresponds to a gap in the excitation spectrum. This
is exemplified in the right-hand panel of figure 5.41. As is clear from a comparison
with the spectrum on the left, a gap develops around the Fermi level of order 2∆. At
the same time, the values of the uk and vk are no longer strictly equal to one or zero.
Instead, their value close to the original Fermi level indicates that the wavefunction
attains a strong mixed particle-hole character. The variation of the wave function
coefficients can be calculated quite easily and they are shown in Fig. 5.42.

To conclude this section we note that the BCS gap equation in fact allows many
more solutions. We repeat it here once more,

∆k = − 1
V

∑

k′

Vk,k′∆k′

2
√

�ε(k′)2 + ∆2
k′

(5.101)

So far we have assumed that the interaction responsible for superconductivity is the
electron-phonon interaction. We have shown in section 5.2 that the simplest form of
the electron-phonon interaction results in a momentum independent interaction that
is attractive over a small range of energies. As the gap equation Eq. 5.99 shows, this is
enough to provide a finite, momentum independent gap. Superconductors that follow
this paradigm are called s-wave superconductors. Note that the characterization
‘s-wave’ has nothing to do with the orbital character of the wave function! A band
containing any mixture of s-, p- and d- orbitals crossing the Fermi level can support s-
wave superconductivity. The nomenclature actually arises from the spherical symmetry
that is implied by the momentum independence of the gap: everywhere on the Fermi
surface of an s-wave superconductor a gap of size ∆ opens. It is however completely
reasonable to assume that the interaction has a momentum dependence. In this case
the nature of the gap can be completely different (and momentum dependent!). An

89

Figure 5.42: Variation of the coefficients uk
and vk along a high symmetry momentum
direction.



interesting example is realized in the high-Tc cuprate superconductors. It is
well established that the superconducting gap in that case follows a so-called d-wave
symmetry (see Fig. 5.43). Interestingly, a possible interaction leading to such a
symmetry was proposed around the same time as the announcement of the discovery
of the cuprate superconductors. Scalapino, Loh and Hirsch proposed a model that
involved anti-ferromagnetic spin-waves (see Chapter 4) as possible mediators of an
interaction between the electrons on 23 June, 1986. The interesting part is that the
interaction in this case is purely repulsive. The resulting order parameter is,

∆k = ∆0
(
cos(kxa) − cos(kya)

)
(5.102)

which has the interesting property that it is negative in two quadrants of the Brillouin
zone and positive in the other two quadrants135. Note that only ∆2

k enters in the
expression for the energy spectrum so that the gap in the spectrum is always positive.
However, the negative values (corresponding to an oscillating phase) have experimental
consequences and can be observed in experiments where a junction is formed between
a conventional s-wave and a d-wave superconductor. In a similar spirit it turns out to be
possible to form p-wave superconductors. These come in different flavors because now
the orbital part of the SC wavefunction is anti-symmetric. The p-wave superconductors
can therefore come with three different spin-configurations (e.g. |↑, ↑⟩, |↓, ↓⟩ and
(|↑, ↓⟩ + |↓, ↑⟩)/2). Not many p-wave superconductors are known. One of them, UCoGe,
was discovered in 2007 in Amsterdam by Y. Huang, A. de Visser and collaborators.

5.7 Epilogue
That is it. For now this is the last section of this set of lecture notes. I will discuss
experimental properties of superconductors during the lectures and let you derive
some in the following set of exercises. Perhaps next year this section will be replaced
with something more substantive. To be honest, I feel a bit ashamed as experimental
physicist not to have described some of the marvelous experiments that can be done
to really bring the topic to life.

Figure 5.43: Fermi surface of a high Tc su-
perconductor (blue lines) and interactions
coupling different momentum states. Since
the interactions are repulsive, the gap has
to change sign between these quadrants.

135 This implies that the gap is zero at 4 special
locations in momentum space!
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EXERCISES V
ELECTRODYNAMICS OF SUPERCONDUCTORS

In this set of exercises, you will investigate the properties of superconductors in a magnetic field
(e.g. the Meissner effect) and the interaction between light and superconductors.

MAXWELL RELATIONS

In lecture 5, we discussed the interaction of light and matter. In this first section, we
summarize the Maxwell relations as well as a few useful relations. The four Maxwell
relations are:

∇ · D = 0

∇ · B = 0

∇ × E = −1
c

∂B

∂t

∇ ×H = 1
c

∂D

∂t
+ 4π
c
J .

(E5.1)

You will also need the relation between the magnetic field and the vector potential:

B = ∇ × A. (E5.2)

We will work in the Coulomb gauge, for which ∇ · A = 0. Finally, keep the following
useful identity in mind:

∇ ×
�
∇ × F

�
= ∇

�
∇ · F

�
−∇2F. (E5.3)

In the exercises that follow, I will work in CGS notation, so that

H = B

D = E,
(E5.4)

i.e., we will not consider induced polarization or magnetization.

THE LONDON EQUATIONS

Well before the BCS theory was around, the brothers Fritz and Heinz London gave a
description of several known electromagnetic properties of superconductors, based
on the Maxwell equations. Starting from the Maxwell equations, they derived several
relations that together have become known as the London equations.

Historically, superconductors were considered to consist of two ‘fluids’: the first
was the normal state electron fluid and the second the superconducting fluid. As a
result, the response of a superconductor in applied magnetic or electric fields consists
of two terms. For example, the total current density j is defined as:

j = jn + jsc, (E5.5)

where the labels n and sc correspond to respectively normal and superconducting.
Close to the zero temperature, the response will be dominated by the superconducting
response136. In the first exercise, we are going to derive several equivalent forms of the
London equations and will use them in the ensuing exercises.

A Starting from Newton’s equations, find an expression for

∂ jsc

∂t
. (E5.6)

Hint: First figure out which forces are working on the superconducting electrons. You
can assume for now that the normal electrons do not contribute to the current. Also
keep the two defining aspects of a superconductor in mind.

B Prove that:
∇ × jsc + e

2ns

mc
B = 0. (E5.7)

C Using the result of exercise 1b, show that the following relation is satisfied:

jsc = − e
2ns

mc
A. (E5.8)
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D Again using the result of exercise 1b, show that:

∇2jsc = 1
λ2L

jsc and ∇2B = 1
λ2L

B, (E5.9)

where λL is defined as:

λL =

√
mc2

4πnse2
. (E5.10)

Hint: For this exercise, you can assume that ∂E/∂t = 0.

THE MEISSNER EFFECT

Meissner and Ochsenfeld observed experimentally that the magnetic field inside a
superconductor is zero. When a superconductor is placed in a magnetic field, surface
supercurrents will start to flow, completely cancelling the field inside the superconduc-
tor. In other words: a superconductor behaves like a perfect diamagnet. In this exercise,
you will calculate the magnetic field and current inside a superconductor. Consider
a semi infinite superconductor, occupying the half space, z0 (see fig. 5.44). Using the
result of exercise 1d, calculate the magnetic field inside the superconductor, assuming
a constant magnetic field outside the superconductor, oriented along the x-direction.
Also calculate the current density inside the superconductor. Hint: If necessary, the
boundary conditions are B(z = 0) = Bz=0 and B(z = ∞) = 0. For the current density, keep
line 4 of equations E5.1 in mind.

OPTICAL PROPERTIES OF SUPERCONDUCTORS

In seminar 3, you derived the Drude-Lorentz model for bound and free electrons.
Having seen how superconductivity changes the dispersions near the Fermi level, you
might anticipate that the optical properties change as well. Unfortunately, the classical
approach can’t take the truly quantum mechanical effects behind superconductivity
properly into account. A calculation of the optical conductivity in the superconducting
state is surprisingly difficult and can only be done analytically using severe approxi-
mations. In fact, the correct description requires numerical calculation of a bunch of
complicated integrals.

In this last exercise, we will calculate some optical properties of superconductors
based on the London equations.

A Start with the result of exercise 1a and calculate the corresponding optical conductivity.
Discuss the result in comparison to the Drude model. What form do σ1(ω) and σ2(ω)
take?

B In this exercise, we will derive the photon wave equation inside a superconductor.
Show that from line 3 of equations E5.1, it follows that:

∇2E = 1
c2
∂2E

∂t2
+ 4πσ
c2

∂E

∂t
+ 1
λ2L

E. (E5.11)

Hint: Use equation E5.5 and the result of 1a at some point. Remember that for normal
metals, j = σE, but not for superconductors.

C Now that we have the wave equation, we can calculate the photon dispersion relation.
Use equation E5.11 to find the photon dispersion relation. Hint: You can use a plane
wave as ansatz for the solution to the wave equation.

D Plot the resulting dispersion for the case that 1/λ2L ≫ σ0 (this is the same as saying
ns ≫ nn) and contrast it with the case of photons in vacuum. What is the ‘mass’ of the
photon? Hint: in this regime, you can just put σ = 0.

PS:The London penetration depth is about 10 nanometers. This results in a photon
mass mph ≈ 10−36 kg. . .

2

Figure 5.44: The geometry for calculating
the magnetic field inside a superconductor.

3
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