CONTENTS

|[Elements of group theory|
[Punintended]

[ntroduction] 4
4
[Morphisms and subgroups| 5

roup representation: 6

Point groups| 8

Bpace groupy 9

|Basis functions of irreducible representations.| 10

[Ihe molecular orbitals of Ammonial 11
[The group of the Hamiltonian| 13

|[Some applications of groups in physics and chemistry|

[We may as well cut out group theory. That is a subject that will never be of any use in physics. - fames fean|
[ntroducdon] 16
[The full rotation group O(3)| 16

[l el spiing] 17

[Symmetry and expectation values| 18

|Direct product groups and their representations| 19
[Matrix efements| 20

21

2

IInfrared and Raman active modesl 23

[Cattice vibrations] 24

[FURTHER READING 26
INDEX 27






ELEMENTS OF GROUP THEORY

Pun intended.

KEYPOINTS:
g5 A discrete group consist of a finite number of elements
g The solutions to the Schrodinger Equation are uniquely

determined by the set of symmetry operations of the prob-
lem



1 C.%. Bradley and A.P. Cracknell, The math-
ematical theory of symmetry in solids, Ox-
ford University Press, 1972. €. Pavarini
et al., Correlated electrons: from models to
Materials, ISBN 978-3-89336-796-2. The
chapter by Pavarini can also be found on
Canvas.
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Figure 1.1: The two symmetry operations
for the equilateral triangle.

Table 1.1: Multiplication table for
G2. To obtain the correct result
always multiply the row element
by the column element.

1.1 Introduction

He theory of quantum mechanics relies heavily on concepts from group theory.

One can find solutions to problems simply by looking at their symmetries. It

has endless applications in both chemistry and physics. Unfortunately, the topic is

enormous and we will only be able to cover a small fraction of it. Here, I follow the
book by Bradley and Cracknell and the text by Eva Pavarini !

1.2 Groups: a first look.

THe abstract definition of a group is given as follows:

Definition 1.1. A group G i3 a set of elements (for example A, B...) together with a
product such that:

* the product of two elements gives another element in the group. Mathematically: if
A, B € Gthen AB € G.

* the product 18 associative: (AB)C = A(BC) forall A,B,C € G.
* there exists a unique identity E such that EA = AE = Aforall A € G.
* every element bas an inverse: AA™ = AVA = Eforall A € G. E is the identity .

Here we will consider finite groups, which consist of a finite number of el-
ements. The abstract definition may not be very illuminating, so let’s take an
example. We will consider a simple object, an equilateral triangle, and ask: "what are
the symmetries and how do we make a group out of this?". Figure[L.1]shows such a
triangle. Also indicated are three lines (the red, blue and green medians) that are for
visual aid only. There are two symmetry operations that will turn the triangle back to
itself. The first is the clock-wise or anti-clockwise rotation by 120 ° around the intersec-
tion of the three medians and the second is the reflection in any one of the medians.
Together with the defining bullet points, we can use these two operations (reflection
and rotation) to make a group. The symmetry operations are called generators. Let’s
call them P (rotation) and Q (reflection). Note that P and Q can be multiplied to create
other elements of our group.

Let’s take another look at Fig. We note that if we apply P three times con-
secutively, we return to the original triangle (with the color of the medians in the
bottom triangle equivalent to the one on top). This allows us to define a so-called
generating relation: P> = E. In words: multiplying the element P three times is
equal to an identity operation. The idea is that the identity (unity) leaves everything
the same (invariant). Similarly, we find that reflecting the triangle in a median twice
also returns us to the original state: Q> = E. You can check for yourself that there is
another generating relation: QP = P*Q (see exercise .

Taken together, we thus have two elements and three defining relations and together
they fulfill the conditions set out above. The group of possible symmetry operations
that leave the equilateral triangle invariant is called G2 (here G simply stands for group,
2 indicates the number of generators and 6 is the order of the group; see below). Groups
are often represented by their multiplication table. Such a table can be obtained once
the generators and defining relations are given.

® E P P Q PQ PQ
E E P P Q PQ PQ
P P P E PQ PQ Q
P2 P E P PQ Q PQ
Q Q PQ PQ E p? P
PQ PQ Q PQ P E P
P2Q PQ PQ Q P> P E

The choice of generators and generating relations is not unique. In the example above,
I could also have chosen clockwise rotations or a reflection in the red or green line. Any
combination of these rotations and reflections would have resulted in a multiplication
table similar to the one above. We conclude this section with a few more definitions.
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Definition 1.2. The order of a group G is simply the number of elements in the group.

The multiplication table above shows that our group, G2, has six elements (including
the identity) and is thus of order 6.

Definition 1.3. The order of an element is the smallest integer, n, such that A" = E.

The generating relations show that the order of the element P in our example is
three, while Q is of order two.
1.3 Morphisms and subgroups

Morphism is an operation that transforms the elements of a group from one
representation to another.

Definition 1.4. Given a mapping F that transforms the group G onto G, the mapping is a the multiplication table for G} has
homomorphism if the multiplication of elements is preserved. the form: —
)
Therefore, for a homomorphic mapping F we have F(G;)F(G>) = F(G1G,). . P P
Definition 1.5. a mapping i called an isomorphism when each element of G maps onto a > P B

unique element of G

Let’s go back to the example of the previous section. We have the group G2 and
want to define a mapping onto the group G’ = G1. The latter has two elements, E
and P'. The generating relation of G} is P> = E. The multiplication table is simple to
derive and puts constraints on the mapping. A homomorphic mapping F from one
group to the other would then require relations linking their elements. For example?: 2 try to explain why this is not an isomor-
phism.
F(E)=E, F(P)=E, F(P*)=E, F(Q) =P, F(PQ) =P, F(P*Q)=P (1.1)

define such a homomorphic mapping.

Definition 1.6. The relations
F(E)=E, F(P)=E, F(P*)=E 1.2)

are called the kernel of the mapping, F. The kernel is the set of elements in G that map onto
the identiy in G’

Finally, if a mapping is defined such that all elements of G are transformed

and reproduce the complete set of elements of G, the mapping is called an

automorphism. A good way of thinking about automorphisms is in terms of matrix
representations and we’ll get back to this in the next sections.

Definition 1.7. A subgroup of G is a set of elements of G that together define a group with
the same binary composition (multiplication) as in G.

The group G2 has 6 subgroups. A trivial subgroup is G} consisting of the element
E. the full group, GZ is also called a subgroup. These two groups are called improper
subgroups and every group has at least two of them (the identity and the group itself).
Then there are three groups that are representations of G defined above. Each group
has the identity element the other element is Q, PQ and P?>Q respectively. We'll take
the last one as an example. The multiplication table reads (see table[L.T):

® E PQ

E E PQ

P2Q PQ E

which is indeed isomorphic to G} under the mapping F(P*Q) = P'. The last subgroup
of G2 is the group consisting of the elements E, P and P2, which is thus labelled G}.
The multiplication table is easily found and has an interesting property® If you take
any two elements of G1, you can verify that G,G, = G»G,. A group for which this holds E E p p
is called an Abelian group. We also need conjugate pairs. 3

Definition 1.8. two elements G, and G, are conjugate pairs if there is another element A in
G such that G, = AG,A™! p? P E P




4 Given that for any element A in G the
last point of definition[1.1] bolds, we bhave
AEA™' = AATY = E

5 The Hamiltonian is a differential operator
and the problem to solve is non-linear and

as such corresponds to a generalized eigen-

value problem. This is more complicated
as described bere, but does not change the
logic bebind the approach.

The identity matrix is conjugate to itself*. A group G can be subdivided in conjugacy
classes or classes in short. Such a class consists of all mutually conjugate elements of
the group. For example, the group G2 has three classes:

Cl:{E},CZZ{P>P2}>C3:{Q>PQ)P2Q} (13)

To conclude this section, we define the outer direct product of G and the semi-direct
product.

Definition 1.9. The outer direct product G = H ® K i8 a group such that,
e ifh € Hand k € K, then hk = kh where H and K are subgroups of G.

« all elements g of G are of the form g = hk.

« the only element that is in both H and K is the identity.
Definition 1.10. The semi-direct product G = H A K is a group such that,
 ifh € H, then hK = Kh where H and K are subgroups of G.

« all elements g of G are of the form g = hk.

« the only element that 18 in both H and K 18 the identity.

The important difference between the outer product and semi-direct product is
that the latter is not commutative (H A K # K A H).

1.4 Group representations

He previous sections are quite abstract, so let’s try to make it a bit more concrete.

Molecules and crystals have symmetries and it is these symmetries that determine

their properties. When we solve a problem in quantum mechanics, we are looking for
a solution to the Schrodinger equation,

Hy(F) = Ey(F) (1.4)

in 1st year quantum mechanics, you probably worked through the atomic hydrogen
problem and found that the solutions could be written in the form:

q//nlm(;) = Rnl(@)YrIn("ga ¢) (15)

where (g, 9, ¢) are spherical coordinates. In more complicated problems (e.g. molecules
and crystals), it is easier to think of the Schrodinger equation as a matrix equation,

Hlv) =E|v) (1.6)

where H is a matrix and |) is a vector in Hilbert space. The state vector |v) i is made
up of the atomic orbitals. For example,

[v) = cWiim 1.7)
i=1

Starting from a single atom, we can construct new Hilbert spaces for molecules and
crystals by taking the outer product or tensor product of the basis states of the atom.
These new Hilbert spaces can become large very quickly. For example, if we take a
system of N qubits, each described by a 2 dimensional Hilbert space (e.g. spin-up and
spin-down), the dimension of Hilbert space grows as 2V.

In the early years of the development of quantum mechanics, it was realised that
this matrix representation offered deep connections to linear algebra. When we solve
the Scrodinger equation, we are trying so solve an equation of the form:

Hy Hp -+ Hin 1 o
Hy Hy -+ Hy C C

=E . (1.8)
Hyi Hy2 -+ Hy CN CN

where the H; represent sub-blocks of Hilbert space corresponding to simple units
(an atom, an electron shell etc.). and the H;; represent couplings between the dif-
ferent blocks. Under certain conditions® this problem must be solvable by a basis
transformation. In other words, there must exist a matrix S, such that,

A =SHS™ (1.9)



with 2 a diagonal matrix®. This relation is also known as a similarity transformation
and the matrix S thus represents a transformation of the vector (Hilbert) space. This
has important connections with the abstract structure of group theory developed
above and requires representation theory to understand.

The idea behind representation theory is that one can define homomorphisms
that map abstract elements of a group to a group of square matrices. This mapping by
definition preserves multiplication and the matrices represent transformations of a
vector space.

Definition 1.11. The matrix representation of a group G 8 defined by the homomorphism
that maps elements of G to square matrices I'. The matrix multiplication preserves the group
multiplication table. The representation is unitary when all i matrices of the group satisfy
=k

In the following we will always deal with unitary representations’. An example of a
matrix representation is that of the group G2. The elements P and Q can be represented
by:

-0.5 -V32 0 -1 0 0
P=1|v32 -05 0/,Q=[0 1 0 (1.10)
0 0 1 0 0 1

and from this we can define the other elements of the group described above. Repre-
sentations are not unique. For a given representation I' of of a group G, it is possible
to define a non-singular matrix S such that

["=5rs! (1.11)

where the I" is also a representation of G. The two representations are said to be
similar. The similarity transformation is important and allows us to define reducible
representations and irreducible representations.

Definition 1.12. A matrix representation, T, i8 said to be reducible if a similarity transfor-
mation exists such that®
H - 0
SeSt= (1.12)
0 --- Hy
i.e. it can be brought in block diagonal form.

On the other hand, the representation is said to be irreducible if this transformation
does not exist. Note that the matrices H; y appearing in the reducible representation
are themselves irreducible representations of elements of the group. The importance of
this is that I'" defined above is a complete representation of the group. Every reducible
representation can thus be transformed to a block diagonal form, where the blocks
are irreducible representations. This is often expressed in a Clebsch-Gordan sum:

r=rgprg.r (1.13)

This is an important statement: it tells us that the problem of finding the repre-
sentations of any group reduces to finding the non-equivalent unitary, irreducible
representations of the group®.

An essential ingredients of representation theory is the orthogonality theorem,
based on the two lemma’s of Schur®.

Definition 1.13. If we consider a group G with elements T, then for two unitary, irreducible
representations I'? and ' of G we bave,

> Tho M ]

£geG

*

h
= - Opadurdoss (1.14)
p

where h is the order of the group G and [, the dimension of the representation
matrix. The importance of this theorem is that it is a statement of ’preservation
of length’ Consequently, it tells us something about the properties of the matrices
representing a group. To arrive at this insight, we need to introduce the character of
reducible representations.

Definition 1.14. The character of a matrix I is the defined as the trace'! of the matrix:

l
r=Tr(l)=) Ty (1.15)
i=1

6 Remember definition

7 This is a consequence of a basic axiom in
quantum mechanics that states that the
time evolution of a system is unitary.

8 the Hy..n are matrices that are not diago-
nal.

9 The term unitary, irreducible representa-
tions 18 often abbreviated to irrep

10 Proofs of the theorem are easily found on-
line...

1 the trace of a matrix is the sum of its diag-
onal elements



the determinant of the matrix for
which ' = Rr holds, equals 1.

12 For d dimensions, the group O(d) 18 also
known as the orthogonal group

|/

Figure 1.2: Symmetry operations of a cube.

Orange indicate the three 4-fold axes, green
indicate the four 3-fold axes and blue the 6
two-fold axes.

One can proof that the elements of the group G belonging to the same class (see
below definition[1.8) all have the same character. By definition, the elements in a class
are conjugate pairs for which G, = AG,A™!. Since A belongs to G, there exists a matrix
representation where,

I, =T, (1.16)

from this it follows that
Tr(T,) = TH(T AT T = Tr(Ty) (1.17)

where in the last step we have used that I'y and I', commute (this is due to one of two
lemma’s by Schur). We can now combine the orthogonality theorem (def. with
the characters of the irreducible representations: For the characters y? and y? of two
irreducible representations, the following relation holds:

D @] =hdpy (1.18)

geG

where h is the order (number of elements) of the group. This orthogonality relation
of the characters has a number of important consequences. It allows us to determine
whether a representation is reducible or not. After all, only irreducible representations
obey the orthogonality relation.

Groups can be completely specified by the characters. One can show that the
characters of a reducible representation can be given by a linear combination of the
characters of irreducible representations:

r(g) =D, a;r"(g)) (1.19)
7

It must therefore be possible to write any reducible matrix representation that trans-
forms according to the group relations in the following form:

= @azrz@...aNrN (1.20)
or,
a1F1 O
: . : (1.21)
O e aNrN

where the matrices I''...I'N are irreducible matrices. From the orthogonality relations
one can show that,

aj=1 3 N @ (@0 (1.22)
k

In words: the coefficients appearing in Eq. can be calculated if we know the
characters of the reducible and irreducible representation. Nj counts the number of
times an element appears in the group. Any given group consists of a number of classes
and this is also the number of inequivalent irreducible representations. The elements
within a class all have the same character and so, we can define a group by the characters
of the different classes. The collection of characters is often represented in a so-called
character table. The character table is represented as a table with the classes on the
horizontal direction and the irreducible representations along the vertical direction.
The entries of the character table can be determined using the above definition of T".
We will not work out how to do this in detail, but instead we will focus on how to
apply the character tables in quantum mechanics problems.

1.5 Point groups

point group is the set of symmetry operations that act on a point in space O and
leave distances and angles invariant. In physics and chemistry, we will therefore
almost always be concerned with 3 dimensional point groups. The point group with
all possible rotations is called the proper rotations group, indicated by SO(3), and it
can be represented by all orthogonal matrices with determinant 1. When combined
with the inversion operator, the group is known as O(3): the 3 dimensional rotation
group'?. It consists of all orthogonal matrices (with determinant plus and minus one).
The matrices with determinant -1 are known as improper rotations and consist of
a rotation and an inversion. In addition to (improper) rotations O(3) also includes
reflections.
In solids and molecules only subsets of O(3) are used, in combination with the
identity and inversion operator. The subset for a particular molecule reflects the



symmetry of the molecule. The triangle in section[I.2]could represent an ammonia
molecule for which the group consists of only 2 rotations and three reflections. When
discussing molecules the following groups can be used to cover all possible symmetries
in 3 space dimensions:

1: Cm Cnha Cnva SZn; Dna Dnda Dnh

2: Tv Td> Tha O: Oh> I) Ih
The groups listed under 1 are known as axial groups, while the groups listed under 2
are known as polyhedral groups. The former consists of proper rotation groups (C)
improper rotation groups (S). The sub-labels h and v indicate that the group includes
a reflection perpendicular to the axis of rotation (C,;; horizontal plane assuming
rotation around z) or n reflections that contain the rotation axis (C,,; vertical plane
assuming rotation around z). The improper rotation group S,, contains an even-fold
rotation reflection axis (odd-fold rotation-reflection is the same as C,). The D groups
are known as dihedral groups and consist of the rotation groups and n two-fold axes'?
perpendicular to the rotation axis. The sub-label d indicates it has a diagonal element.
The groups listed under 2 are the tetrahedral group (T), octahedral group (O; not to
be confused with O(d)) and the icosahedral group (I). They are composed of the set of
elements that leave the tetrahedron, cube and dodecahedron invariant. As an example,
O has three 4-fold axes, four 3-fold axes and 6 diagonal 2-fold axis (see Fig. [L.2).

In crystals it is only possible to use subsets of these groups. For example, the group
C, in crystals only comes with the values n = 2, 3,4, 6. Other values of n simply are not
compatible with the formation of an infinite crystal'4. This leads to the definition of
exactly 32 crystallographic point groups. As discussed in the previous section, these
point groups can be completely specified by their character tables. We will not list
them here, as they are tabulated and can be easily found (for example, on wikipedia).

1.6 Space groups

N addition to the 32 point groups, crystals are characterized by an additional group:
I the translation group. The translation group is the set of lattice translations R =
nma+n,b +nsc. The translation group is both unitary and Abelian. The unit vectors
can also be thought of as operators. Applying the operator R shifts the vector r to r + R.
It is easy to convince yourself that operators R; and R, commute.

In three dimensions we can define three distinct operators T, for the indepen-
dent directions in space, each forming an infinite cyclic subgroup'. Elements in the
group are often indicated as:

{Re|T} (1.23)
where R, is some vector belonging to the translation group.The irreducible representa-
tions of these Abelian groups are 1 dimensional. Since a 1-dimensional matrix consists
of a single number, the character of the representation is at the same time also a
representation! The generator G of the cyclic group has to satisfy the relation G* = 1,
with L the order of the group. Given this relation, the character can be written as:

Yiy (Tx) = efm (1.24)

where the numbers k; have to satisfy the condition k; = 2wmy/L with m; = 0, 1, 2....
For a crystal, L is the length of the crystal assuming periodic boundary conditions.
Note that we have as many characters as we have k-values and each character is an
irreducible representation of the translation group.

The translation group can be used to quickly derive Bloch’s theorem. Assume
that the potential of a crystal is periodic, V(r+R) = V(r) or, in our new language,
{Rq|T} V(r) = V(r). Since the kinetic energy is also invariant under translations, the
wavefunctions must satisfy the condition:

{Rq| 7} 9(r) = y(r+R) = 1" y(r) (1.25)

where we have used in the first step that the action of a translation is to shift the
coordinates of the wave functions, while in the second step we have used that the
irreducible representations of the translation group are given by their characters.

When we make composite groups of the crystallographic point groups and transla-
tion groups, we end up with so-called space groups. The combination of point groups
and (fractional) translations give rise to two additional symmetry operations that can
leave a crystal invariant: the screw axis and the glide plane. The screw axis is a rotation
followed by a fractional translation, while the glide plane is a reflection followed by
a fractional translation. By combining the 32 point groups with translations, screw
axes and glide planes, in total 230 distinct space groups can be generated. If a group
contains a glide plane or screw axis, it is said to be non-symmorphic, while it is called
symmorphic without these elements.

13 A two-fold axis is a 180 degree rotation
about a line

14 If you are interested in this, bave a look at
the work of Jobann F.C. Hessel,

the two operations Iél =%and 1%2 =
y commute

15 \Cyclic groups are generated by a single
element.


https://en.wikipedia.org/wiki/List_of_character_tables_for_chemically_important_3D_point_groups
https://en.wikipedia.org/wiki/Johann_F._C._Hessel
https://en.wikipedia.org/wiki/Cyclic_group

16 Sorry. You may not to read this sentence
three times...
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1.7 Basis functions of irreducible representations.

He final ingredient of group theory that we will discuss are the basis functions
T corresponding to irreducible representations. Basis functions can be used to gen-
erate the matrices representing the symmetry elements because they form a complete,
orthonormal set that satisfies the following orthogonality condition:

(T[T j) = e (1.26)

Here I'" is a representation of a symmetry element of a group and j labels the basis
function corresponding to the representation (also called partner function). The
number of basis functions equals the dimension of the representation. The basis
functions connect abstract symmetry operators with their matrix representations
according to:

Py |I™i) = 3 M5(8) (F”'j> (1.27)
J

where er]" (g) is the matrix corresponding to element g of the representation I of the

group G'°. The combination of Eq. [1.26/and Eq. leads to,

(T jIB i) = > ME (@) (T T ) = M} (@) (1.28)
J

showing that the matrix elements are diagonal in each irreducible representation. This
relation can be used to generate the matrix elements of the matrix representations.

The basis functions defined above are completely abstract, so it probably helps to
provide you with a concrete example. Let’s return to our example of the triangle in Fig.
As we discussed in section[I.3] this triangle has three classes and therefore there
are three irreducible representations. The basis functions in this case are conveniently
expressed in terms of function f(x,y, z). Note that we need the orthogonality of the
basis vectors, so these are functions of the basis vectors x, y and Z of unit length. The
first step now is to find the action of the symmetry operator on the X, § and 2 vectors.
The action of our 6 elements on the 2 vector are easiest. The action of E, P and P?
(corresponding to no action and rotation about the z-axis) leave the z-axis invariant.
The action of Q (reflection), PQ and P?Q (reflection followed by rotations) also leave
the z-axis invariant.

How about the X and y vectors? Of course, they are also invariant under the identity
operator. Itis not difficult to show (using simple geometry) that the vector X transforms
to 0.5(=% + v/39) under the action of the operator P. This gives the following relation:

Brlx) = 3 1)+ V313)) (1.29)

Similar transformations can be obtained for the action of the other elements on x and
9. These relations are summarized in the following table:

~ ~

X y z
E X B 2
P | 0.5(=k+V3)) 0.5(-k-V3)) 2
P2 | 0.5(-%-39)  0.5(v3k+9) 2
Q % 9 2

PQ | 0.5(+/3%-9) 0.5(-x-V3p) 2

P2Q | 0.5(v3%+9)  0.5(v/3%-9) 2
From this table one can generate the matrix representation of the group. For example
if we want to generate a matrix describing the two-dimensional irreducible repre-

sentation of a reflection followed by a rotation (i.e. PQ) in the basis |x) and |y), we
find,

L i1
[Ix) 19)] PePo { J;i ] = {_2] _33} (1.30)
2 2

The table above can be used to generate the matrices for other operators as well and
once we have the matrices, we can generate the character table for our class. As with
the representations, the basis functions are not unique. We could have chosen an
arbitrary function of x,, y and z as basis function, but that would likely have generated a



reducible representation. Basis functions that generate irreducible representations are
often listed together with the character table. We are now in the position to completely
specify our group (which is in fact better known as the group Cs,):

Cy, | E 2C5(2) 3o, linear quadratic cubic
3
z
Al |1 1 1 z X +y?%, 2 x(x? = 3y?)
z(x* +y?)
Ar |1 1 -1 R, - y(3Bx2-y?)
(xz%,yz%)
E |2 A 0 | Coyh(Re Ry) | (2 +y*xy)y(xz,y2) [xyz, 2(x* + y*)]
[XG +3%, 0 + )]

where also quadratic and cubic basis functions are given. The labels A indicate a singly
degenerate representation (in other words, a one-dimensional representation) while E
indicates a doubly degenerate representation. We will also encounter representations
that are labeled T, which means it is a triply degenerate representation. These symbols
are known as Mulliken symbols. In the next section we’ll consider an important set of
basis functions: the wavefunctions of a molecule or solid.

As mentioned, basis functions are not unique. Once we know how simple basis
functions transform under the operations of the group, we can define arbitrary basis
functions. This is achieved using projection operators. The orthogonality theorem for
characters combined with the matrix representation given above can be shown to lead
to the following definition:

Definition 1.15. If one knows the characters of the irreducible representations of a group,
the projection operator:

ay l n iy
Prn - n I R * P 1.31
Y ZR: r (R) Pr (1.31)
where I, 18 the dimension of T, h 18 the order of the group. By acting with this operator on an
arbitrary function, one can obtain the basis functions of the irreducible representations.

As an example, we will consider the Ammonia molecule in the next section and in
Excercise 2] the basis states of an hypothetical AB; molecule.

1.8 The molecular orbitals of Ammonia

E now put our new-gained insight in group theory to use by analyzing the
molecular orbital structure of an ammonia (NH;) molecule. By inspection of
Fig.[1.3]we see that the ammonia molecule has a three-fold rotation axis around the
vertical axis and three reflection planes. Since the nitrogen is above the plane of the
three hydrogen atoms, there is no horizontal reflection plane, nor a horizontal rotation
axis. This leads us to the point group Cs,, the character table of which is shown above
in table The character table has three irreducible representations (A, A, and E)
and therefore we can expect the molecular orbitals of NHj3 to fall in one of these three
types. The easiest is to start with the orbitals on the nitrogen atom. They are at the
center of the point group and we can easily estimate how the atomic orbitals transform
under the action of the point group!’. The 1s, 2s orbitals are radial and transform
according to x? + y? + z2. Looking at the character table[1.2} we see that they belong
to the A, representation. Similarly, the p,, p, and p. orbitals transform according to
x, y and z respectively. From the character table we see that p, transforms according
to the A, representation, while p, and p, transform according to the 2 dimensional
E representation (the character of the identity operation is 2 according according to
the table. The trace of a 2x2 identity matrix is 2; ergo, the dimension of the matrix
representation is 2). This makes sense: rotating the p, orbital by 120 degrees about z
does not leave it invariant. It is easy to show that the orbital transforms from p, in
our original frame of reference to a superposition of p and p, orbitals in the rotated
frame of reference according to py — -0.5p, +v/3/2p,. Such a transformation is indeed
described by the 2x2 rotation matrix of Eq.[I.30and corresponds to a C; rotation.
Next, we investigate how the hydrogen 1s orbitals transform under the Cs, group. This
is a bit more subtle, because the orbitals change position in space under the action of
the group elements. For example, under an anti-clockwise rotation the orbital labelled
"1", appears in position 2. It is in this simple case not difficult to write down a matrix
representation for the group. Starting from the state vector constructed out of the

Table 1.2: character table for the
group C3v. The numbers appear-
ing in front of the labels C; and o,
indicate the number of elements
in the class. The order of the group
is 6 and it has three irreducible
representations (indicated here by
their Mulliken symbol).

17 Since the nitrogen atom coincides with the
rotations axis, they remain in the same spa-
tial position in space under the operation
of the elements.

<@
® | R
@

Figure 1.3: The NH; molecule. It features
a 3-fold rotation axis (dashed red line) and
vertical reflection planes indicated by the
three lines bisection the base lines of the
triangle.

11



12

3 1s orbitals, one can write down a matrix relation describing a specific action. For
example, the anti-clockwise rotation can be found from the matrix equation:

a b ¢ Y )
d e f Yy | = Vs (1.32)
§ h Jjl [ vs V1
from which it follows that,
01 0
0 0 1 (1.33)
1 0 0

The matrix in Eq. is a representation of Cz. It is also easy to see that it is part
of a reducible representation: the character table for the group C;, does not contain
a three dimensional irreducible representation. One can write down the 6 matrices
corresponding to all elements of Cs,:

1 00 010 0 0 1

E=|0 1 0/,Ci=({0 0 1|,G={1 0 0 (1.34)
0 0 1 1 00 010
100 0 0 1 010

al=10 0 1|,¢2=[0 1 0|,02=|1 0 0 (1.35)
01 0 10 0 0 0 1

From this overview we can write down the characters of the representation:

Csy E 2Ci(z) 3o,
I'=A1+E | 3 0 1
Al 1 1 1
E 2 -1 0

The top row describes the characters for the reducible representation of the 1s orbitals.
We could have similarly arrive at this result by counting the number of atomic sites
that remain invariant under a symmetry operation. This is the case, because this is the
only way in which you can get an entry on the diagonal of the matrix representation.
The identity operation leaves all sites invariant and so you find the entry 3. A rotation
transforms any atom into another atom (nothing is invariant), so it has character 0. A
reflection interchanges two sites, but leaves one invariant. It therefore has character
1. From Eq. we know that it should be possible to reconstruct this from the
characters of the irreducible representation of Cs,. Since the character y(E) = 3, we know
that one of the components is the E representation. The only other possibility that
results in the characters of I' is to add A; and E. These considerations imply that one
should be able to construct basis functions (molecular orbitals, MO) from the hydrogen
1s orbitals that transform according to these irreducible representations. There will be
one MO transforming according to A; and 2 (degenerate) MO’s transforming according
to E. To construct these basis functions, we make use of the projection operator defined
in Eq. This works as follows. For each of the irreducible representations (here
A; and E), we consider the action of P on an original state. We start with the A,
representation. The order of the group h=6 and /4, =1. Remember: by acting with this
operator on an arbitrary function, we project out the basis functions of the irreducible
representation. Therefore, if we take the 1s orbital of atom 1 as arbitrary function, we
find:

Phoy, = é [lfz//f + lft/lgg + ]‘ulg3 + l‘z//'lrll’ + l‘z//g’3 + l‘z//gg] (1.36)
where the superscripts are only there to help you understand where the state is coming

from. The numbers in front of the basis-functions are the characters that appear in the
projection operator. The basis function that transforms according to A is thus:

Yy, = %[‘W1+‘14/2+‘1V3] (1.37)
We can do the same with the E representation. We find:
Py, = % [Zfz/lf - 1‘1//§g - w? + 0'1/1'173’ + 0'1//'375 + 0‘1//23] (1.38)
and therefore:
= %{2%—%—%} (139)



However, this is only one of the two basis functions of E (E is a 2 dimensional represen-
tation). There are different methods to determine the last basis state. For example, we
could make use of orthogonality (find the vector that is orthogonal to both ¥4, and
k). A more general approach is to keep using the projection operator. For example,

Py, = % [2vE- 195 - 197 (1.40)
and 5

A + fon

Phayy = ° [zwg ~ 195 - 1%3] (1.41)
The last basis function can be found by taking the difference of two states:

v} = Plyyy — Prays = [y, - 3] (1.42)

1.9 The group of the Hamiltonian

E are now ready to eat the main dish: the connection between group theory
C \/ and quantum mechanics. As mentioned earlier, the goal of solving a quantum
mechanical problem is to find the energies (eigenvalues) and wavefunctions (eigenfunc-
tions) for a given Hamiltonian with a number of symmetries. An alternative statement
is that we are looking for the eigenfunctions of a Hamiltonian that is invariant under
a group of symmetries. The meaning of this statement is that the solutions of the
Schrodinger equation do not change under a symmetry operation. Symbolically we
mean that if we transform the system under the action of a projector P,

P:ly) > |y (1.43)

the states |%’) and |v') really are the same state. Instead of acting on the state, we can
also let P act on the operators in the Hamiltonian. This is where matrix representations
come in handy. Let’s take,

|v') =Plvy) (1.44)

then, X o
(v'[H|vy") = (w| P'"HP |v) (1.45)

Under the assumption that the operator P is unitary'®, we find that,
A =P'HP (1.46)

which is the statement that H is invariant under the symmetry operation. It follows
that H and P commute: )
[H, P} -0 (1.47)

The group of symmetry operations, Pg, for which:
[H, ﬁR] -0 (1.48)

defines the group of the Hamiltonian. One can show that,

« The elements Py form a group.

« If the wavefunction, v, is an eigenfunction of the Hamiltonian (with eigenvalue
E,), then (because of Eq. l Pry, is an eigenfunction with the same eigenvalue.

« Ifan eigenvalue is d-fold degenerate, the dimension of irreducible representation
of the operator Py is d.

« If one has a complete set of eigenfunctions, we can use Eq. to make a matrix
representation of the element R.

The essence of the combination of group theory and quantum mechanics is that
we can apply the knowledge (documented character tables for all point and
space groups) to determine the eigenfunctions and their degeneracies. An example
was discussed in section the translation group. Because this is a subgroup of the
Hamiltonian, the k distinct irreducible representations of the translation group, can be
used to label the corresponding basis functions (Bloch waves) and to each basis function
corresponds a unique eigenvalue (Ey). Note that group theory does not tell us anything
about the details of the eigenvalues. These need to be obtained from further calculation.
Similarly, the projection operator Eq. [1.31]allows us to determine linear combinations
of atomic orbitals that are invariant (eigenfunctions)under symmetry operations of
the point group. By definition, we now know that they are also eigenfunctions of the
Hamiltonian.

18 This means that the following condition is
met: PTP = PPt = I It follows from this

that Pt = P!
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EXERCISES I
ELEMENTS OF GROUP THEORY

In the following set of exercises we will discuss some elementary exercises.

THE MULTIPLICATION TABLE OF G2

In this exercise we will check some of the statements presented in this chapter([T.2}

¢ A In the text it is claimed that there is a defining relation QP = P>Q. Show that this

19 Remember that this means UTU = E and ‘B
that + involves complex conjugation and
transposition

2

Figure 1.4: CI ligands of a PtCl; molecule ‘B

C
3 D

€
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9

Figure 1.5: An AB4 molecule
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equality indeed holds and explain in words what it means.
Check that the matrix representation of G2 (Eq. [1.10) is unitary".

Check that the matrix representation of G2 (Eq. [1.10) indeed satisfies the multiplication
table. It suffices to choose a few interesting entries.

PTCL4 ORBITAL SYMMETRY (AFTER ATKINS 2006 )

In figure [T.4] the Cl ligand orbitals are schematically indicated. They form a square
planar array and belong to point group D4h. Find the character table online and
identify the symmetry type of the combination v 4-vg+vc-wp.

AB4 MOLECULES

Consider a molecule of the form given in Fig.

¢ A List all possible symmetry operations for this molecule that transform it back onto

itself.

Make a list of subgroups that together form the group of AB4.

Make a list of the classes.

Find the 2D irreducible matrix representations for the elements of this group.
Verify that your results fulfill condition Eq.

Look up the group C4v online and verify that this is indeed the point group describing
this molecule.

For the H atoms we consider only the 1s orbitals. Using the character table of C4yv, find
the 4 basis functions that describe the molecular orbitals of the H atoms.

H Verify that your basis functions are orthogonal, given that:

/fy/l.*q,/j: 1 (E1.1)



SOME APP LICATIONS OF GROUPS IN PHYSIC!
AND CHEMISTRY

We may as well cut out group theory. That 18 a subject that will never be of any use in physics. - Fames Fean

KEYPOINTS:

g5 Group theory predicts lifting of degeneracy in crystal fields-
The finiteness of overlap integrals can be determined from
GTSelection rules for optical properties follow the symme-
try groups.



20 [ will ignore here all details associated with
the two components of O(3). The interested
reader can find all info on wikipedia,

Table 2.3: character table for the
group O(3). I stands for inversion
and S for rotations followed by an
inversion.
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2.1 Introduction

IN this chapter we will touch upon a number of applications of group theory. We

start by exploring the lifting of degeneracies due to the crystal field effect. This is
followed by a discussion of overlap integrals and their finiteness. The same arguments
are then applied to study the selection rules underlying optical processes.

2.2 The full rotation group O(3)

0 understand the hierarchy of eigenvalues in solids or molecules and the relation
T with symmetry, we return to the most symmetric case: the hydrogen atom. In
this simplest example, we have a single proton as nucleus and the long range Coulomb
potential with which the electron interacts. Since the Coulomb potential is spherically
symmetric (the potential only depends on the coordinate 7, which is the distance
of electron to the nucleus), we can separate the wavefunction in radial and angular
components as,

Ynlm = Rn,IY[m('l()a ¢) (21)

In introductory quantum mechanics courses, you learned that the energy levels are
given by
R 1
E,=- — 2.2
"7 2mal n? 2

Since this only depends on the quantum number n, the orbital angular momentum
states with different m for a particular value of [ are degenerate in energy. We will
see in this first application that lowering of symmetry results in the lifting of those
degeneracies.

We start with a first look at the radial eigenfunctions:

—m)! .
170,00 = 1[G prcosope 23)

These functions are in fact basis functions for the full rotation group, O(3)®. This is
important, because it tells us that it must be possible to obtain the characters of O(3)
by making use of representation theory. Without further proof, we note that it must
be possible to define a rotation operator, P, that rotates an object by an angle a in
terms of a matrix D(a) according to:

PY[' (O, ¢') = Y DL, Yhi (9, 9) (2.4)

For a specific rotation where we take the z-axis as rotation axis, the action of the
operator on a basisfunction for a particular quantum number [ is,

PLY(,9) = Y'(0, ¢ — ) = €™ Y"(0, ) (2.5)

where in the last step we made use of Eq. This states that indeed the Y/"(9, ¢ - «)

are eigenfunctions of the operator P. Combining this with Eq. we find that the
matrix D(a) is given by:

erila ... 0
. —i(l-Da
Dy=| = ¢ (2.6)

0 eil{x

The trace of this matrix is the character for rotations of the group O(3) and is given by:

Lo sin (I+1/2) «
Z{'I(OC) - Z emima _ ( — ) (27)
=, sin ¢

Similar expressions can be found for the other characters of O(3): and with these

0B3) | E Cla) 1 S(a) o
FI 204+1 smgil;léz)a (_1 )1(21 + 1) (_1 )1 sm(sli;l@f:)nm (_1 )1
2

characters, we can work out how the degeneracies are lifted if we lower the symmetry.


https://en.wikipedia.org/wiki/Orthogonal_group

2.3 Crystal field splitting

E are now in the position to see what happens when an atom is placed in a

C \' periodic arrangement with other atoms. What happens in words is that the

symmetry of the full rotation group is lowered. In a crystal, the potential is no longer

just radially dependent. Instead, the crystal is only invariant under sub-group of these

rotations. Group theory is the ideal tool to predict what happens to the energy levels
of the original atom. The recipe is as follows:

« First determine the point group corresponding to the crystal.

» Compute the O(3) characters of orbitals with a particular value of the quantum
number /.

 Determine to which irreducible representations these orbitals belong in the lower
symmetry group.

The first step is non-trivial, but we will assume the structure is known. To

compute the characters in O(3) is also easy. Finally, we need to determine the

irreps for the orbitals with particular orbital angular momentum I. This can be done

by making use of Eq. of the previous chapter. To illustrate the procedure, we will
work through a concrete example: cubic crystal field splitting in ABO; oxides.

The crystal structure of ABO; is shown in figure[2.6|and consists of a central atom
surrounded by 8 oxygen atoms. It is not difficult to see that this cube has the same set
of symmetry operations as the cube of figure[1.2] of the previous chapter. The actual
group of this structure is Oy, but for simplicity we will first consider that the group of
symmetry operations describing this cubic unit cell is O*. The character table for the
group O is as follows:

O | E 8C; 6C, 6Cy 3C,
A |1 1 1 1 1
A |1 1 -1 -1 1
E |2 - 0 0 2
Ty | 3 0 -1 1 -1
T, | 3 0 1 -1 -1
r|s - 1 -1 1

This group has 5 classes and each class consists of a sub-group of a particular rotation.
The first step is to write down the characters for the representations of these elements
in the full rotation group for particular values of I. In our example, we will consider
the effect of the crystal field potential on a central transition metal atom (for example
Ti or Cu). In this case, the outer occupied shell of the free atom is the 3d shell. We
therefore consider the case [ = 2. The characters for this representation are indicated
in the table by the I'? representation (to compute these numbers we used [ = 2 and
a =2m/3, 7, w/4 and 7 for the individual columns).

How to read this result? Since the character of the identity operator is 5, we
know this is a 5 dimensional representation. This makes sense: the 3d-orbitals in
a free atom are all degenerate and the quantum number [ = 2 implies that there
are m = -2,-1,0,1,2, i.e. five orbitals. We also know the characters for the specific
elements in O(3) that make up the group O. However, if we look back to the character
table for O, we see that we have a problem. There is no five dimensional irreducible
representation in O! This tells us without further calculation that the degeneracy of the
3d-orbitals must be lifted. The trick is that we have to find the direct sum of irreducible
representations of O that give us the correct representation in O. In other words, we

need to determine,
=o' @ar @..arm (2.8)

such that we obtain the characters of the I'? representation. This can be done with
trial and error b y adding the characters of different representations, but there is a
more systematic approach that makes use of the orthogonality relations through Eq.

:
aj= 3 2 N (e0r" (g @9
k

This states that the coefficient of a particular irrep j can be computed if the characters
of the full representation and those of the irreducible represenation are known. We
can now use this to our advantage. We find:

© a5 =L(1-1-5+8-1--146-1-146-1--1+3-1-1]=0

-
o

The cell is cubic, with the A atom
ure 2.6: Unig cell for ABO

f ack) in the centre of the cell.

The central atom is surrounded

by an octahedron of oxygen

atoms(red). The B atoms are

located at the corners of the unit

cell (blue).

21 The difference between O and Oy, is the ad-
dition of a center of inversion in the latter.
We could start with Oy, but the exercise
becomes a lot more tedious. Instead, we
ignore inversion _for the moment and will
work out the correct irreps at the end.
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t;g orbitals

y k4 i
3d,, 3d,, 3d,,
X X Y

Figure 2.7: The five 3d-orbitals.

22 The 3dx2_y2 orbital is an eigenfunction of
the four-fold rotation Cy(z), but is not in-
variant under any Cy(x) or C4(y).
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© a4, =101-1-5+8-1--146--1-1+6--1--1+3-1-1]=0
« ap=2L[1-2-5+8--1--1+6-0-1+6-0--1+3-2-1] =1
«ap=L1[1-3-5+8-0--1+6--1-1+6-1--1+3--1-1] =0

«arn,=L1[1-3-5+8-0--1+6-1-146--1--1+3--1-1] =1

Note that h =24 is the total number of elements in O. and each term is of the form
Nkrrk ¥" where the first y is the character of the element in the O group and the
second is the character of the I'? representation of that element. The only coefficients
that are finite are a; and ar, and this tells us that the reducible I'> representation in O
can be written as:

I=EapT (2.10)

From the character table we now see that the E representation is two dimensional
and the T, representation is three dimensional. Therefore, the degeneracy of the
five orbitals is lifted and we are left with a two-fold degenerate state and a three fold
degenerate state. What remains to be determined is how these orbitals transform
under the symmetry operations so that we can determine to which representation
they belong. This can be done by looking up the full character for O online or
by realizing that only the 3d,y .. can transform in an invariant way under four-fold
rotations?* We conclude that the 3d,y, 3dy. and 3d,, orbitals form a triplet, while the
3d,2_» and 3d,>_,» form a doublet. These degeneracies can be further lifted if additional
symmetries are broken. An example can be found in exercise [I}

To conclude this section, we return to the fact that the ABO; crystal structure also
ha an inversion center. This is easy to see if we refer back to Fig. if we take the
central atom as the center of inversion and invert all axes, we retrieve the same crystal.
By looking at how the 3d orbitals transform under inversion (Fig. 2.7), we see that
they also do not change sign. This tells us that the character of inversions for this case
is y = 1. The character table for the group O; can be found online. This group has a
number of additional classes that are combinations of rotations and inversions. Since
we know that the character for inversion is 1, we only have to focus on the first 5 rows
of the character table. We immediately recognize that the characters of the rotations
are identical to those of O. The only difference is that there are now irreps with an
additional label (g or u from the german for even (gerade) and odd (ungerade)). The
correct decomposition of I'? is thus,

[ =E,® Toy (2.11)

2.4 Symmetry and expectation values

THe second application we will discuss is the impact of symmetries on observable
quantities. Very generally speaking, anything that we observe in quantum me-
chanics requires the measurement of an observable of the form:

(v Olo) (2.12)

where the initial (|¢)) and final (Jv)) state wavefunctions may or may not be the same.
Another example is the rate of transitions from an initial to a final state due to a weak
perturbation, H’, that are given by Fermi’s golden rule:

2 NRENT
Ff»f=% ‘(“/’f|H w»\ o(Er) (2.13)

Yet other examples are the selection rules for an infrared optical transition, or matrix
element for a photoemission process where an electron is ejected from a solid to a
vacuum state, both of which are of the form,

(vs] €T7p ;) (2.14)

or the a3 and y integrals involved in the tight-binding approach discussed in Chapter
?2.

Each of these expressions involves evaluating complex integrals and group theory
is of little help in the actual evaluation of these integrals. What group theory can do is
to provide a quick insight into when these integrals are zero by symmetry.

Theorem 2.1. A product of the form
(v]00) (2.15)

i8 finite when it transforms under the Ay representation of the symmetry group of the Hamilto-
nian.


http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=904&option=4

We will not worry about the proof?. Instead, we’ll focus on what it means. We 2 see Chapter 6 of Hamermesh, Group the-
recognize that Eq. [2.28]is an expectation value and must therefore be a real number. ~ 0ry and its application to to physical prob-
The product has to transform under any of the group’s symmetry operations according lems (1962)
to a positive number. If this where not the case, we would symbolically find that

P((v]019)) == (v'| 1#) (2.16)

which implies that the expectation value is zero (<(fu/| 0) \(1))) is not supposed to change

under a symmetry operation). From this observation we thus find that the expectation
value is finite only if it transforms according to the A; irreducible representation, for
only under this representation the characters of a group are all equal to 1.

To make use of theorem 2.3|we need a few ingredients. Firstly, we will assume that
we have already determined the eigenfunctions of the physical problem at hand (i.e.
the molecular orbitals of a molecule; the Bloch functions of a crystal etc.). Second we
need to define the direct product of two representations in order to determine the
characters of the representation according to which Eq. 2.3]transforms.

Since we choose eigenfunctions of the (unperturbed) Hamiltonian, they form a
complete and orthogonal set of basisfunctions of the representation of the group of
the Hamiltonian. We thus have,

where the index a refers to one of the basis functions that spans the i’th representation
of the full group. To make it more concrete, for an atom we have irreducible represen-
tations that are labelled by the quantum number [. For [ = 2, we thus have five basis
functions that span the i’th representation (see table : \rq/fz> and a=3dyy...3d,2_
and we know that these 3d states are mutually orthogonal.

Suppose now that we have two sets of basis functions corresponding to two different
representations, then the matrix element,

<¢f?’ Holve) =, <¢%|”‘!’i> = Ju i (2.18)

2.5 Direct product groups and their representations

He second ingredient necessary to evaluate matrix elements is the notion of the

direct product group. Such groups are defined as the ‘composite’ group consisting

of elements that are products of the individual elements of the two groups. For two
groups G; and G, the direct product group is:

G=G1®G, (2.19)

We already encountered an example of a product group in section The group
Oy, is the direct product group of the orthogonal group O with the inversion group
C; = {I,1} where i is the inversion operator. The direct product group contains ten
elements (5 elements of O combined with 2 elements of C;).

The notion of direct product groups becomes useful when we consider the represen-
tations of these groups. In practical applications, we define the symmetry operations
as matrices that multiply our basis functions. For each element, we can define a matrix
for one of the irreducible representations of the group and a corresponding character.

Theorem 2.2. The direct product of (irreducible) representations of two groups forms a
(irreducible) representation of the direct product group

We will again not worry so much about the proof, but make use of the consequences
of this statement: the characters of the direct product group can be simply expressed
as products of the characters of the two original groups.

Definition 2.1. « The character of an irreducible representation of a direct product group
G1 ® G, 18 obtained from:

YO0 (R Py) = 791 (R)yC2(P,) (2.20)

o The character of a representation of a direct product between two representations of the
same group I'' @ 2 is obtained from:

R = T (R (R) .21)

19
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To see this for yourself, consider the following matrix product:

e f &
{‘C’ Z] ©|h i 2.22)
k | m

The characters (trace or sum of the diagonal elements) of these two matrices are a +d
and e +1 +m respectively. To obtain the matrix product, we need to multiply each
element of the second matrix with the entire first matrix (A;):

€A1 fA1 gAl
hAL A A (2.23)
kAl lAl mA1

The trace of this new (6 by 6!) matrix is eTr(A;)+Tr(A;)+mTr(A,) = ea + ed +ia +id +
ma +md. This is indeed equivalent to (a + d)(e + i +m) or the product of the characters
of the two individual matrices.

We will however mostly be interested in the direct product of irreducible represen-
tations of the same group. The resulting product representation is in general reducible.
In this case, the character is:

PR = 7T R R) = Y agr™ (R) (2.24)
Tk

Making use of Eq. [1.22} we can compute the coefficients a; according to,
1 i j
aie= o D Nar™ (Ro) [ (Ro)r™ (Ro) (2:25)

or equivalently, .
aije= 3 X Nar” R (R (2.26)

2.6 Matrix elements

E are now in a position to consider the effect of perturbations. As mentioned
U \/ above, we consider wavefunctions to be eigenfunctions of some Hamiltonian,
Hy. We would like to know under what conditions a matrix element of the form,

(01|

¢;3'> + 0 (2.27)

We can now cast theorem 2.3]in the following form:

Theorem 2.3. A product of the form
o0 HY @ ¢) (2.28)
18 finite when it transforms as the irreducible Aq representation.

The a, 3 and y indicate orbitals or block diagonal parts of H' that transform
according to a specific symmetry element, while 7, j and k label irreps. This
allows us to make use of Eq. in evaluating expectation values. Let’s consider a
concrete example. We take an electron in a 3p orbital of the central Ti atom in SrTiO;
(Fig. . As before, we determine to which irreducible representation these orbitals
belong and find that they transform according to the T; representation. We now ask
the question if we can make an optical excitation between this state and and a vacuum
level state (which transforms according to the A; representation). To do this, we need
an expression for the interaction. As you may (but don’t have to) know, the interaction
between electrons and light is given by,
b =_5 b
mc

N

(2.29)

One can show that A commutes with the Hamiltonian, but p does not. We therefore
need to determine how the components of p transform under the symmetry operations
of the group of the Hamiltonian. Since the components (p;, p,, p.) are linear in x,y
and z they also transform according to the T; representation. From the above, we find
that the direct product,

vy @ Hl' @ ¢l (2.30)



From which we find (making use of Eq. 2.2,
0 E 8C; 6C, 6Cy 3C,
T'®T! 9 0 1 1 1
A@TeT) |9 0 1 1 1
We have thus found the characters of the reducible representation of the matrix
element?*. We now use the decomposition formula Eq. @ to find the irreducible
representations that make up the product A; @ (T' ® T"). It works similar to before

© ap=5[1-1-9+48:1-0+6-1-1+6-1-1+3-1-1] =1

© ay,=2L[1-1-948-1:046--1-146--1-1+3-1-1]=0
© ap=L[1-2:948--1:046-0-1+6-0-1+3-2-1]=1

. aT]

=L[1:3-948:0-046--1-1+6-1-1+3--1-1]=1
« ar,=2L[1-3-948:0-0+6-1-146--1-1+3--1-1]=1
and we therefore find that the product can be decomposed as:
Y @ HT @ ¢h, = A+ E+Ti+ Ty 2.31)
Since this contains the A; representation, the expectation value,
(Guac| P+ A |03,) = 0 2:32)
It would have actually been sufficient to take a look at,
ATl 1
H ®9¢], (2.33)

and,
0 E 8C; 6C, 6Cs 3C,
T'®T' | 9 0 1 1 1
The same decomposition as above now gives,

AT @ ¢l = Al +E+T1+ T (2.34)

This tells us how H |¢) transforms and it is possible to show? that a matrix element
will be finite if the closing bra (+/| transforms according to the A;, E, Ty or T, represen-
tations.

2.7 Molecular Vibrations

ONe of the valuable applications is that it allows us to predict infrared and Raman
active vibrational modes for molecules and crystals?. You can work your way
through the quantum problem if you are interested?”, but here we will simply focus
on the group theory approach.

The essential thing you need to know about the quantum problem is that the
vibrations are described by a problem of the form:

H| fx) = Egn(K) | fx) (2.35)

where the | fx) are the vibrational modes and E4(K) is the corresponding energy.
There is a bit of a subtlety with the label K. For molecules, K just labels the different
vibrational modes. For example, H,O has three different vibration modes and K=1,2,3.
In crystals you have a near-infinite number of modes and the label K can be interpreted
as the momentum of propagating vibrations (a.k.a. a phonon). Because of periodicity,
we can construct similar diagrams for phonon modes as we did for electrons. An
example is shown in Fig. This problem is very similar to the problem of
constructing molecular orbitals. In that case, we have

H|va) = B [wa) (2.36)

and we were looking for the molecular orbitals |v,) that were expressed in terms of
the atomic wavefunctions of the individual atoms. The difference is that here, each
atom has three degrees of freedom (it can move in the x,y and z directions) and we
need to take that into account in our analysis. This problem would be equivalent to the
problem of finding M.O’s of an ammonia molecule (section [1.8|where the 1s-orbitals
on the hydrogen is replaced by three 2p orbitals. This is a more complicated situation:
the symmetry operations do not necessarily map the 2p, orbitals from one hydrogen
atom onto the 2p, orbital of the next atom. Instead, you could imagine that these

24 The identity operator has character 9, so its
dimensionality is 9. The octabedral group
only has representations with dimension
1, 2 and 3.

25 [ think.it is sufficient to show that the direct
product of an irrep with itself always has
the Aq irrep in its decomposition.

26 In a molecule you also have rotational and
mixed modes. The same arguments apply.

27 In short, motion of the atoms is described
as coupled quantum bharmonic oscillators
and you need to find the normal modes of
the problem. This can be found in basic
solid state textbooks®” or physical chem-
istry textbooks>®
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Figure 2.8: Phonon spectrum of Diamond
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Figure 2.9: Three vibrational modes of H,O.

Also indicated are the irreps to which they
belong.

32 Note that we are dealing with movement
of atoms. we do not have to worry about
positive and negative lobes of wave func-
tions here
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three orbitals form a ’vector’ The problem now is to find how that vector transforms
under group operations.

The same principles for molecular orbitals, also apply to the case of finding vi-
brations. First, we identify the point group of our molecule. Second, we find the
characters for the reducible representation describing the invariant atoms and then
decompose this in irreducible representations (similar to what we did in section 1.8
below Eq.[T.34). The key difference is that the movement of each atom is described by
three components and we and we can thus represent this movement by a vector. To
include this, we need to compute the direct product of the reducible representation of
the atomic sites with the irreducible representations for the vector:

Toip = Tas @ Ty (237)

The rest of the procedure is then similar to before. There is however one small caveat:
Eq. also contains the motion and rotation of the molecule as a whole (absolute
motion/rotation of cenre of mass). Since we are only interested in the vibrations of
the molecule (relative motion/rotation of atoms), we need to subtract these from our
reducible representation:

l—‘vib = (Fa.s ® rvec) - Ftr - l—‘rot (238)

In this expression, I';, are the characters of the irreducible representations for the
(x,y,z) components of the vector. We haven’t made use of the basisfunctions for I';,;
yet. As you may have already realized, rotations of a molecule correspond to higher
angular momentum states (as the molecule starts to rotate, its angular momentum
increases). Angular momentum is described by [=Fx p and you may remember that
this vector is perpendicular to the two vectors making up the product. It therefore
transforms differently under symmetry operations compared to the (x,y,z) components.
The irreducible representations of the angular momentum vector are indicated in the
character tables by the (Ry, R, R;) basis functions.

Once we have determined I',;, we can analyze the symmetry of the vibrational (or
phonon) modes by looking at how I';;, decomposes into irreducible representations.
From this we can then construct the normal modes of the molecule and by making
use of the same arguments of section we can also determine whether a mode is
infrared active or not. Finding the normal modes follows a procedure that involves
projection operators similar to finding the molecular orbitals. Let’s go to a concrete
example

2.8 Vibrations of H,O

A simple, but insightful example is the set of vibrational modes of hydrogen. Unfortu-
nately (for me), we have not yet considered the point group of hydrogen, which is C,,.
The character table is:

Cy E G oy 0'],) lin. quad.
A1 1 1 1 z X2, 7
A |1 1 -1 -1] R, xy
BT [1 1 1 -1|R,x| «xz
B [1 1 -1 1 |Regy| yz

e, |3 1 3 1
The o, reflection plane is in the plane of the molecule because it contains the C, rotation,
while o7, is perpendicular to the molecule. In contrast to before, we are now interested
in the motion of atoms in space. The choice of the frame of reference therefore matters.
Looking at the character table, we see that the z-component transforms as the A; rep-
resentation, so we must choose our z-axis along the C, rotation axis. The x-component
transforms according to B; and is left invariant by ;. The x-axis of our reference frame
must therefore also lie in the plane of the molecule.

We can now write down the characters of the atomic site representation using the
same counting procedure discussed below Eq.[1.34)in section[1.8] Under the identity
operation, all three atoms stay in their own place so we add three times 1 together to
get the character of the identity operation. Under the action of C,, only the central
oxygen remains in the same location. The character is therefore 1. When the molecule
is reflected in the vertical plane, all atoms remain in the same position and we again
obtain the character three. Finally, the reflection in the plane perpendicular to the
paper (going through the z-axis) only leaves the oxygen invariant and we again find
character 132.

This is a reducible representation as is easily seen by looking at the character table.
There are no two or three dimensional irreps, so I';;. needs to be constructed from




three irreps of C,,. This is done using the same method as used in sectionby making
use of Eq. 2.9] We find:

. aAl:}1[1-1-3+1-1-1+1-1-3+1-l-]]:2
«ap=1{1-1-3+1--1-141-1-3+1--1-1}=1
while all other coefficients are equal to zero and so,
o5 =2A1+B; (2.39)

According to Eq. we need to know the characters of the representation of the radial
(x,y, z) vector. The character table tells us that it can be composed out of irreducible
representations according to:

rvec = Al +Bi1+B; (240)

and this is also the representation of I';, since it has the same components. We'll also
need the representation of the angular momentum:

[t = Ay +B1+B; (2.41)

We can now compute the direct product:

Tes®Tee) = (RA1+B1)®(A1+B1+By) (2.42)
= 2A1-A1+2A1-B1+2A1-By+B1-A1+B;-B1+B;-B, (243)
= 2A1+2B1+2B,+Bi+A+A, (2.44)
= 3A1+3B1+2B,+ A, (2.45)

where in going from line[2.43|to[2.44} we have made use of the character table. Sub-
tracting of I, and I, we finally find:

Ty =2A1+ B, (2.46)

Our symmetry analysis thus tells us that H,O will have three vibrational modes, two
with A; symmetry and one mode with B; symmetry. What this ‘means’ is that the
molecule has two vibrations that leave the symmetry of the molecule intact. In this
simple case you can see that bond stretching or band angle changing vibrations leave
all symmetries intact.

We won’t bother with determining the actual motions of the atoms corresponding
to these modes (they are however indicated in Fig. 2.9).

2.9 Infrared and Raman active modes

In this section we combine the knowledge of sections|2.6|and [2.7|to determine the
optically allowed transitions between molecular vibrations. We'll assume that our
molecule is initially in its ground state with no excited vibrations. We’ll call this state
| fi) and it must have A; symmetry. When we let the molecule interact with the electric
field of the photon, a dipole moment will be created due to the displacement of atoms.
Similar to Eq. we have,

A =-E-i (2.47)

where E is the photon electric field and 7 is the dipole moment. Similar to the motion
of the atoms, u transforms according to a vector (e.g. as I',,.). The only components
of i that are important are those that have overlap with the E field (i.e. if the field is
polarized along the x direction, we only need to consider the dipole moment (u,, 0, 0).
To determine whether a molecule is infrared active, we need to determine whether
the matrix element for the transition is finite:

(frlH'|fi) = 0 (2.48)

where | ff) is one of the vibrational modes of the molecule. This can be done using the
same procedure as in sectionand so we need to ask whether the product 'y, ® I';
is finite or not. If the molecule is originally in its groundstate, then 'y, ® A; = Ty

We can now compare the irreps of I',;, with those of T',,.. All modes in I';;, that
also appear in I'y,. are optically active. It is possible to consider more complicated
cases. For example, in a 2-photon process where the first photon excites the molecule.
The interaction with a second photon now has a different matrix element, because we
start from an already excited state that does not necessarily has the A; representation.
Also note that not all vibrational modes need be optically active.
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We can also consider the Raman effect where a photon is scattered, rather then
absorbed. We will not go into the details here, but the difference in process is reflected
in the perturbation. One can show that A’ transforms as a second rank tensor (and
not as a vector). This is especially important when the point group of the molecule or
solid has inversion symmetry. It turns out that in the absorption process the dipole
moment couples states that have opposite parity (i.e. odd or even under inversion). In
Raman processes, only states with the same parity couple and the two experiments
combined provide us with a complete picture of the optically active modes. Without
inversion symmetry, one can have vibrations that don’t couple in either process.

2.10 Lattice vibrations.

A proper discussion of phonon modes in crystals would require us to now delve into
the representations of space groups. Perhaps this will one day be part of this course.
For now, i’ll leave a few remarks. The analysis of phonon modes in solids follows quite
closely that of molecular vibrations. The key difference is that vibrations in solids are
propagating and this means that there is an additional vector (the phonon momentum)
that has to transform according to the space group symmetry. However, at a special
point in the Brillouin zone (F = 0), this distinction disappears and the approach is in
fact similar to that of the molecular vibrations above.

At the zone center, one can apply the formalism of section[2.7]and determine the
phonon modes of the crystal accordingly. There is one big difference. In the molecular
case, the total number of vibrations depends on the number of atoms in the molecule
and is at most 3M (three degrees of freedom, M atoms in the molecule). Symmetry
considerations may lower the number of independent modes.

In a solid we have N unit cells and one might therefore expect 3N phonon modes.
This is however not the case. Instead, we will find a number of phonon branches that
is equal to 3K, where K counts the number of distinctly different atoms per unit cell.
Each branch consists of 3N modes and each mode has a different momentum.



EXERCISES II
APPLICATIONS OF GROUP THEORY
One exercise corresponding to each paragraph.
CRYSTAL FIELD SPLITTING

In this exercise, we will look at the degeneracy of 3d orbitals in non-cubic geometry.

MOLECULAR VIBRATIONS OF NHj

In this exercise, we will look at the molecular vibrations of NH;. The ammonia
molecule is shown in Fig. and as you may remember has point group Cj,.

Look up the character table for the Cs, point group and determine the characters of (
the I, representation.

Find the decomposition of the I', ;. representation.

Compute O —
rvib = (ra.s & rvec) - 1—‘tr - 1—‘rol’ (EZl)

You can use the online decomposition tool.

J

Can you indicate with arrows how the atoms are moving for a vibration with A;

symmetry? e

Figure 2.10: NH; molecule in 3D and
viewed from above.

Which of these modes are infrared active?
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http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=403&option=1&a1=4&a2=1&a3=0

FURTHER READING

[1] P. W. Atkins and J. De Paula, Atkins’ Physical chemistry, en, 8th ed, New
York: W.H. Freeman, 2006, 1SBN: 978-0-7167-8759-4.

[2] Introduction to solid state physics, Wiley.

[31 Wikipedia, Crystal structure. {Online]. Available: https://en.wikipedia.org/
wiki/Crystal_structurel

[1] OCLC: 66528976


https://en.wikipedia.org/wiki/Crystal_structure
https://en.wikipedia.org/wiki/Crystal_structure

27



NDEX

A

Abelian group
automorphism

‘B
basis functions [10]

character [2
character table [§]
Clebsch-Gordan sum [7
conjugacy classes @

conjugate pairs @

crystallographic point groups ﬂ

€

elements [

F

finite groups [
full rotation group

G

generating relation @

generators [

group [

H

Hilbert space  [g]
homomorphism

improper subgroups
invariant |4
irreducible representations

isomorphism

K

kernel [3]

N

non-symmorphic [

V)

order [
outer direct product [g]

P
phonon branches  [24]

R

reducible representations

representation theory

S

semi-direct product @
similar [@

space groups |9

subgroup
symmorphic @

T

tensor product  [q]



	Elements of group theory
	Introduction
	Groups: a first look.
	Morphisms and subgroups
	Group representations
	Point groups
	Space groups
	Basis functions of irreducible representations.
	The molecular orbitals of Ammonia
	The group of the Hamiltonian

	Some applications of groups in physics and chemistry
	Introduction
	The full rotation group O(3)
	Crystal field splitting
	Symmetry and expectation values
	Direct product groups and their representations
	Matrix elements
	Molecular Vibrations
	Vibrations of H2O
	Infrared and Raman active modes
	Lattice vibrations.

	Further reading
	Index

